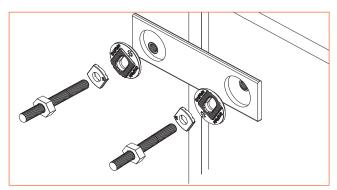
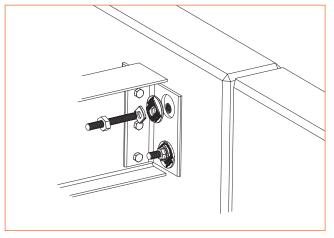


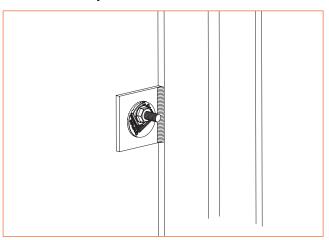
OrbiPlate[™] **Post Installed Design Guide**

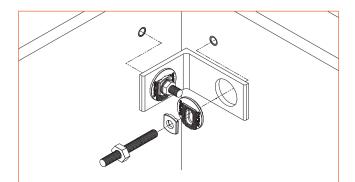

OrbiPlate[™] Post Installed offers flexibility with rotational and positional tolerance, making it easier to find drilling locations without hitting reinforcing bars in concrete.

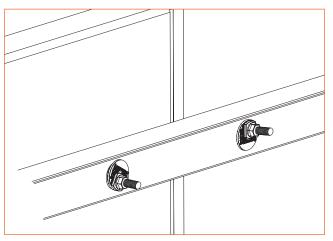
For more information on our products call 0800 72 67 38 Or go on our website ramset.co.nz



Applications


The Ramset^m OrbiPlate^m is a versatile solution for a wide range of applications, including straight panel-to-panel connections, corner panel-to-panel connections, roof beam-to-panel connections, raker angle-to-panel connections, and column-to-panel connections. It effectively addresses the common challenge of aligning holes — a task that is often time-consuming, costly, and structurally inadequate with traditional methods.


Straight panel to panel connection


Roof beam to panel connection

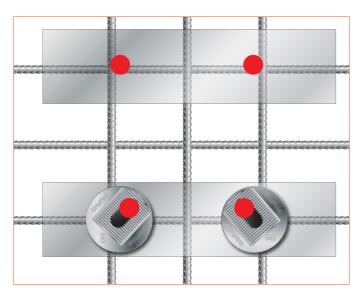
Column to panel connection

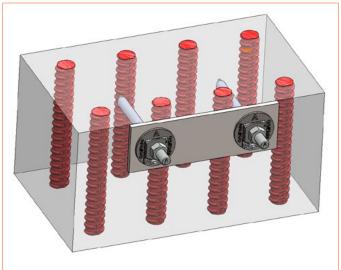
Corner panel to panel connection

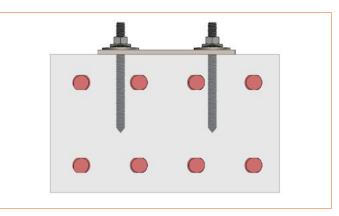
Raker angle to panel connection

Benefits

Ramset Post-Installed OrbiPlate is a smart solution to avoid the challenges of rebar interference while keeping the project efficient and costeffective. It's a great way to ensure structural integrity and avoid additional costs related to fixture rework and the time delays from redoing drilled holes.


When anchoring into heavily reinforced concrete it is common to encounter rebar when drilling. This can be a serious issue, both for the integrity of the structure and for the work process itself. Drilling through rebar risks compromising the concrete's strength, which could affect the building's overall structural integrity. Additionally, drilling through rebar can be tough on tools, increasing wear and tear and leading to greater costs in the long run due to the need for specialized, stronger bits.


The alternative is to fill the hole with a chemical adhesive, wait for it to cure, and then drill a new hole adjacent to the original hole. However, this approach is time-consuming, involves extra material costs, and requires modifications to the steel fixture, making the process more complicated and expensive.


Using a post-installed OrbiPlate allows the installer to avoid the need to rework rebar by first scanning the concrete and marking out the rebar locations. This step helps the installer avoid drilling directly into the rebar, which can prevent damage to the structure and tools.

The OrbiPlate's 20mm tolerance around the original hole location allows for some flexibility in positioning the new holes. If the installer detects rebar in the original planned location, they can simply shift the hole within that 20mm margin without needing to drastically alter the installation plan. This flexibility saves time and avoids having to redo the work.

If rebar is encountered, rather than continuing to drill through it, the installer can fill the hole with a chemical adhesive. This ensures that the structural integrity of the concrete is not compromised. Once the adhesive cures, the installer can then drill a new hole within the 20mm tolerance allowed by the Orbi plate, preserving the original fixture alignment without any need to modify or rework the steel fixture itself.

Example of a concrete column to give perspective of the rebar density.

OrbiPlate[™] & ChemSet[™] Anchor Stud M20 HDG Kit with EPCON[™] C6 PLUS

General Information

Product

OrbiPlate[™] Post Installed offers flexibility with rotational and positional tolerance, making it easier to find drilling locations without hitting reinforcing bars in concrete.

Compliance

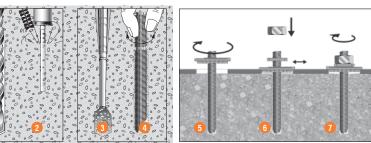
European Technical Assessment (option 1) - ETA-18/0675 Design according to:

- AS5216 (formerly TS101)
- AS1170.4 Earthquake Actions
- EN1992-4 (formerly ETAG001 Annex C, E & TR045)
- Use enclosed data for simplified calculation method

Use Ramset™ iExpert Anchor Software for optimised calculation or where a greater range of anchor layout detail is needed.

Feature

• A large washer with an elongated slot surrounded by teeth that lock the smaller washer in place, allowing positioning of the Anchor Stud with up to 20mm misalignment.


Advantages

- Provides 20mm positional tolerance.
- Fine positional adjustment.
- No rotation under shear load.

Benefits

- High structural capacity.
- · Allows fine positional adjustment.
- · Avoids misalignment delays and call outs.
- No hot work required on site.

Installation

- 1. Drill recommended diameter and depth hole.
- Important: Use Ramset^{*} Dustless Drilling System to ensure holes are clean. Alternativly clean dust and debris from hole with stiff wire or nylon brush and blower in the following sequence: blow x 2, brush x 2, blow x 2, brush x 2, blow x 2.
- Dispense adhesive to waste until colour is uniform light grey (2-3 trigger pulls). Insert mixing nozzle to bottom of hole. Fill hole to 3/4 the hole depth slowly, ensuring no air pockets form.
- Insert the supplied Ramset[®] ChemSet[®] Anchor Stud to bottom of hole while turning.

- 5 Place the large washer in the 70mm fixture hole and rotate until the slot lines up with the M20 ChemSet Anchor Stud.
- Move the small washer along slot until it aligns with the M20 ChemSet Anchor Stud.
- 7 Attach the nut and tighten to the specified torque.

Performance Related

Material Specification

Installation Related

Principal Applications

- · Panel to panel fixing
- Raker Angles
- Roof beams to walls
- · Steel column to panels

Recommended Installation Temperatures

	Minimum	Maximum
Substrate	5°C	40°C
Adhesive	10°C	40°C

Service Temperature Limits

-40°C to 70°C

Temperature of base material	Cartridge Temperature	Gel Time	Curing time in dry and wet concrete
5°C	Minimum 10°C	300 min	24 h
10°C	10°C	150 min	18 h
15°C	15°C	40 min	12 h
20°C	20°C	25 min	8 h
25°C	25°C	18 min	6 h
30°C	30°C	12 min	4 h
40°C	40°C	6 min	2 h
Note	e: Cartridge temper	ature minimum +10)°C

Note

*Seismic Performance of cored & oversized holes was not included in the ETAG test program. Performance data of cored holes only applies to cracked and uncracked concrete based on the latest European Technical Assessment ETA 18/0675.

OrbiPlate[™] & ChemSet[™] Anchor Stud M20 HDG Kit with EPCON[™] C6 PLUS Combination

The following design information is for the OrbiPlate[™] & ChemSet Anchor Stud Kit when used in combination with Ramset[™] ChemSet[™] EPCON[™] C6 PLUS.This design information is not applicable if OrbiPlate[™] is used with other adhesive anchor systems as a reduction in capacity can be expected.

Installation and Performance Details:

Non-Cracked Concrete Design

						Optimum di	imensions*			Reduced C	haracteristic	Capacity#	ked Concrete , φN _{uc} (kN)**										
Anchor size, d _b	Drilled		Fixture	Anchor	Tightening	Tightening		Concrete	Grade 5.8 S	Steel Studs	Non-Cracked Concrete												
	hole diameter,	OrbiPlate™ Part Number	hole diameter,	effective depth, h	torque, T _r	Anchor	Edge distance,	substrate thickness,	Shear.	Tension,	Ten	sion, $\phi N_{_{uc}}$ (kN	l)**										
(mm)	d _h (mm)		d _r (mm)	(mm) "	(NM)	(Nm) spacing, a _c (mm)	e _c (mm)	b _m (mm)			Concrete Compressive Strength, f'c												
									(kN)**	(kN)***	20 MPa	32 MPa	40 MPa										
														100	300	150	144				32.8	41.5	46.5
M20	22	ORB2020PIAGH	2020PIAGH 70 ± 1	150 120	120	450	225	190 49.9	49.9 81.3	81.3	60.2	76.2	80.7										
				170		510	255	214			72.6	88.9	91.4										

*Note: For shear loads acting towards an edge or where these optimum dimensions are not achievable, please use the simplified strength limit state design process to verify capacity.

**Note: Reduced characteristic ultimate concrete tensile capacity = ϕN_{uc} where $\phi = 0.67$ and N_{uc} = Characteristic ultimate concrete tensile capacity.

For conversion to Working Load Limit MULTIPLY $\phi N_{uc} \ge 0.5$ ***Note: Reduced characteristic ultimate steel tensile capacity = ϕN_{us} where $\phi = 0.67$ and $N_{us} =$ Characteristic ultimate steel tensile capacity.

For conversion to Working Load Limit MULTIPLY $\varphi N_{_{US}} x \ 0.67$ for Gr 5.8

#Note: Design Tensile Capacity ϕN_{ur} = minimum of ϕN_{ur} and ϕN_{ur}

For Cracked Concrete performance, please use the simplified strength limit state design process to verify capacity.

Data is based on a Service temperature limit of -40°C to +70°C

All data relevant for Dry, Wet and Flooded Holes.

##Note: Shear capacity based on overall fixture thickness up to and including 16mm. For fixture thickness greater than 16mm and up to and including 32mm multiply V_{us} by 0.70.

Seismic Design

		Under all note elective torque T Anshar Edge Substitute										Reduc	ed Charac	teristic Ca	apacity	y																																				
Anchor size, d _b (mm)	Drilled hole		Grade 5.8 Steel Studs		Seismic C1 & C2 Cracked Concrete tensile capacity N ⁰ _{Rdp.seis} (kN) **				oacity,																																											
	diameter, d, (mm)	Number	diameter, d, (mm)	depth, h _n (mm)	(Nm)	spacing,	distance,	thickness, b_ (mm)	Shear,	V _{Rd seis}	Tension, N _{Rd'seis} Concrete Compressive		ssive Stre	ngth, f'c																																						
	-h ()			(,		a _c (mm)	e _c (mm)	-m ()	(kN)##	(kN)***	20	/IPa	30 N	IPa	40 N	/ Pa																																		
									C1	C2	C1	C2	C1	C2	C1	C2	C1	C2																																		
																																					10	100		300	150	144					18.7	12.3	19.5	12.8	20.1	13.2
M20	22	ORB2020PIAGH	70 ± 1	150	120	450	225	190 214	7.3	7.3	82	82	35.3	23.3	36.8	24.3	37.9	25.0																																		
				170		510	255						40.3	27.2	41.9	28.3	43.1	29.1																																		

* For anchor spacings or edge distances less than the minimum, please refer to the simplified strength limit state design process to verify capacity.

** Tension values are based on service temperature limits -40°C to +70°C only. If service temperature limits is beyond this range please contact Ramset Engineer.

** Note: Seismic Cracked concrete combined pull-out and concrete cone resistance, tension = $N_{\text{nd},\text{subilis}}^{\circ} = \alpha_{\text{Note:}} N_{\text{Rescale}}^{\circ} / \gamma_{\text{Mep}}$ where $\gamma_{\text{Mep}} = 1.5$ ***Note: Seismic Cracked Concrete steel resistance, tension = $N_{\text{nd},\text{subilis}}^{\circ} = \alpha_{\text{Note:}} N_{\text{Rescale}}^{\circ} / \gamma_{\text{Mes}}$ (kN) where $\gamma_{\text{Mes}} = 1.5$ (Grade 5.8 steel) ## Note: Shear Data includes annular gap reduction factor of 0.5

For optimised performance data, please use Ramset iExpert Anchoring Software.

Description And Part Numbers

OrbiPlate[™] Kit

Anchovoire d (mm)	Deser	Part No.					
Anchor size, d _b (mm)	Descr	Description					
M20 x Serrated Plates	Washer OD (mm)						
M20 X Serrated Plates	80	ORB2020PIAGH					
M20 x 240	ChemSet Anchor	Stud Galvanised					

ChemSet[™] Adhesive Anchoring System Design

Description	Size	Part No.
ChemSet EPCON™ C6 PLUS	600ml	EC6P600

Engineering Properties

OrbiPlate[™] and ChemSet[™] Anchor Stud Combination

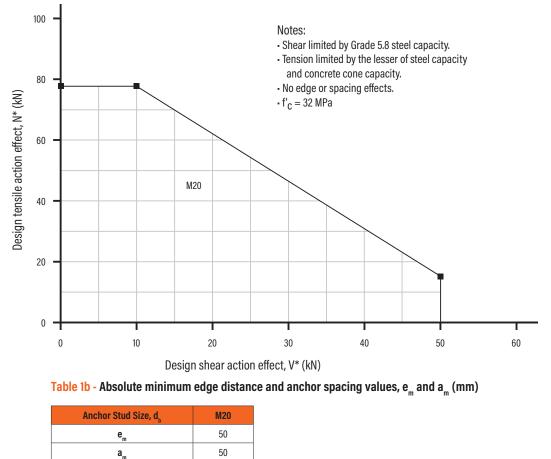

					Grade 5.8	Steel Studs	
Anchor Stud Size, d _b	Overall Length, L (mm)			Stress Area , A _s (mm²)	Yield Strength, f _y (MPa)	Carbon Steel UTS, f _u (MPa)	Section Modulus, Z (mm³)
M20	240	225	32	232.4	420	520	540.9

Table 1a - Indicative combined loading - interaction diagram

Step 1c Calculate anchor effective depth, h (mm)

Effective depth, h (mm)

Preferred $h = h_n$ otherwise,

Substrate thickness b_m (mm) Anchor Stud Size (mm) M20 h + (2 x d_b)

t = total thickness of material(s) being fastened.

Anchor size determined, absolute minima compliance achieved.

STEP

Verify concrete tensile capacity - per anchor

Table 2a - Reduced characteristic ultimate concrete tensile capacity, $\phi N_{\mu\nu}$ (kN), $\phi_{\mu} = 1/1.5 = 0.67$, $f'_{\mu} = 32$ MPa

Fixing System		OrbiPlate" with M20 ChemSet" Galvanised Anchor Stud installed with EPCON" C6 PLUS											
Effective depth h, (mm)	100	150	160	170	180*	200*	240*	280*	320*	350*	400*		
Bond - $\phi N_{ucp'}$ (kN)	52.3	78.4	83.6	88.9	94.1	104.6	125.5	146.4	167.3	183.0	209.1		
Concrete Cone - $\phi N_{ucc'}$ (kN)	41.5	76.2	84.0	91.9	100.2	117.3	154.2	194.4	237.5	271.6	331.9		

*Note: For effective depth 180mm and greater please use typical threaded rod with minimum grade 5.8 and cut to length.

Table 2a-1 - Cracked Concrete or Seismic effect, tension, X_{n.cr.seis}

	Fixing System	OrbiPlate™ with M20 ChemSet™ Galvanised Anchor Stud installed with EPCON™ C6 PLUS						
	Condition	Non-Cracked Concrete	Cracked Concrete	Seismic Cracked Concrete				
	Condition	Non-Cracked Concrete	Cracked Concrete	CI	C2			
V	for Bond $\phi N_{uc} = \phi N_{ucp}$	1.00	0.75	0.47	0.31			
X _{n,cr,seis}	for Concrete Cone $\phi N_{uc} = \phi N_{ucc}$	1.00	0.70	0.59	0.59			

Calculate φN_{urc} for both φN_{uco} and φN_{ucc} then choose the minimum - Refer to Checkpoint 2

Table 2b - 1 - Concrete service temperature limits effect, tension, X_{ns}

	Service temperature (°C) -40°C to +70	°C
v	for Bond $\phi N_{uc} = \phi N_{ucp}$	1.00
^ _{ns}	for Concrete Cone $\phi N_{uc} = \phi N_{ucc}$	1.00

Table 2b - 2 - Concrete compressive strength effect, tension, X

	Fixing System	OrbiPlate™ with M20 ChemSet™ Galvanised Anchor Stud installed with EPCON™ C6 PLUS							
	f'c (MPa)	20	25	32	40	50			
	Condition								
v	for Bond $\phi N_{uc} = \phi N_{ucp}$	0.96	0.98	1.00	1.03	1.05			
X _{nc}	for Concrete Cone $\phi N_{uc} = \phi N_{ucc}$	0.79	0.88	1.00	1.12	1.25			

 $= 0.25 + 0.5^{*}(e/h)$

Note: Tabled values are based on the nominal effective depth, h shown in the installation details. For other values of X_{ne} please use equation shown above.

Where $e_m \le e \le e_c$ $e_c = 1.5^*h$

Х

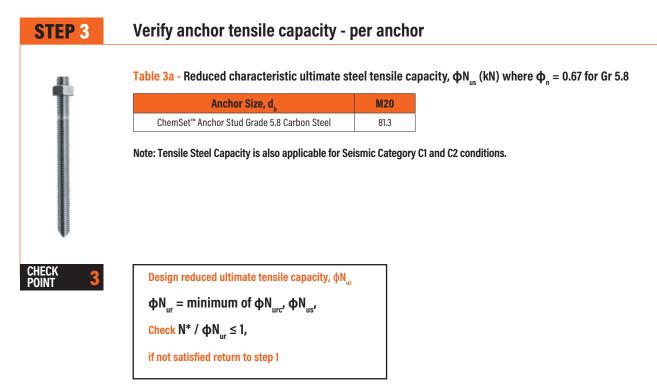
Table 2c - Edge distance effect, tension, X_{ne}

Fixing System		OrbiPlate™ with M20 ChemSet™ Galvanised Anchor Stud installed with EPCON™ C6 PLUS										
Edge distance, e (mm)	50	65	70	80	100	115	135	165	187	255		
Effective Depth, h (mm)												
100	0.50	0.58	0.60	0.65	0.75	0.83	0.93	1.00	1.00	1.00		
150	0.42	0.47	0.48	0.52	0.58	0.63	0.70	0.80	0.87	1.00		
170	0.40	0.44	0.46	0.49	0.54	0.59	0.65	0.74	0.80	1.00		
200	0.38	0.41	0.43	0.45	0.50	0.54	0.59	0.66	0.72	0.89		
280	0.34	0.37	0.38	0.39	0.43	0.46	0.49	0.54	0.58	0.71		

 $\begin{array}{l} X_{na}=0.5+a/(6^{*}h)\\ \text{Where }a_{m}\leq a\leq a_{c}\\ a_{c}=3^{*}h\\ \text{Note: Tabled values are based on the nominal effective depth,}\\ h shown in the installation details.\\ \text{For other values }X_{ac}\\ \text{please use}\\ \text{equation shown above.} \end{array}$

POINT

Table 2d - Anchor spacing effect, tension, X_{na}


Fixing System	OrbiPlate™ with M20 ChemSet™ Galvanised Anchor Stud installed with EPCON™ C6 PLUS									
Anchor spacing, a (mm)	50	65	85	100	125	150	200	270	375	510
Effective Depth, h (mm)										
100	0.58	0.61	0.64	0.67	0.71	0.75	0.83	0.95	1.00	1.00
150	0.56	0.57	0.59	0.61	0.64	0.67	0.72	0.80	0.92	1.00
170	0.55	0.56	0.58	0.60	0.62	0.65	0.70	0.76	0.87	1.00
200	0.54	0.55	0.57	0.58	0.60	0.63	0.67	0.73	0.81	0.93
280	0.53	0.54	0.55	0.56	0.57	0.59	0.62	0.66	0.72	0.80

Design reduced ultimate tensile capacity, ϕN_{urc}

```
\Phi N_{urc} = minimum of \Phi N_{ucp} * X_{n,cr,seis} * X_{ns} * X_{nc} * X_{ne} * X_{na} and \Phi N_{ucc} * X_{n,cr,seis} * X_{ns} * X_{nc} * X_{ne} * X_{na} * X
```


STEP 4

Verify concrete shear capacity - per anchor

Table 4a - Reduced characteristic ultimate concrete edge shear capacity, φV_{uc} (kN), $\varphi = 1/1.5 = 0.67$ f'_c = 32 MPa

Anchor Size, d _b	M20							
Effective depth, h (mm)	100	150	170	180-400				
Edge distance, e _m (mm)								
50	7.2	8.2	8.5	8.7				

Table 4a - 1 - Cracked Concrete or Seismic effect, tension, X_{v.cr.seis}

Fixing System	OrbiPlate™ with M20 ChemSet™ Galvanised Anchor Stud installed with EPCON™ C6 PLUS								
Condition	Non-Cracked Concrete	Cracked Concrete	Seismic Crac	ked Concrete					
Condition	Non-Cracked Concrete	Cracked Concrete	C1	C2					
X _{v,cr,seis}	1.00 0.71		0.30	0.30					

Note: Seismic effect for C1 & C2 includes annular gap reduction factor of 0.5.

Table 4c - Load direction effect, concrete edge shear, X_{vd}

0-55

1.0

Table 4b - Concrete compressive strength effect, concrete edge shear, X_{vc}

Fixing System	OrbiPlate™ with M20 ChemSet™ Galvanised Anchor Stud installed with EPCON™ C6 PLUS									
f'c (MPa)	20	25	32	40	50					
Condition										
X _{vc}	0.79	0.86	1.00	1.11	1.22					

70

1.2

80

1.5

90-180

2.0

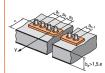
conc. edge shear, Xvd

= e/e_m *√e/e_m

<u>3*e+a</u> *√e/e 6*e Table 4d - Seismic cracked concrete anchor spacing and edge distance effect, concrete edge shear, X_{ve} For single anchor fastening X_{ve}

60

1.1


e/e _m	1.0	1.2	1.4	1.6	1.8	2.0	2.2	2.4	2.6	2.8	3.0	3.2
X _{ve}	1.00	1.31	1.66	2.02	2.41	2.83	3.26	3.72	4.19	4.69	5.20	5.72

For 2 anchors fastening X_{ve}

Angle, α°

 X_{vd}

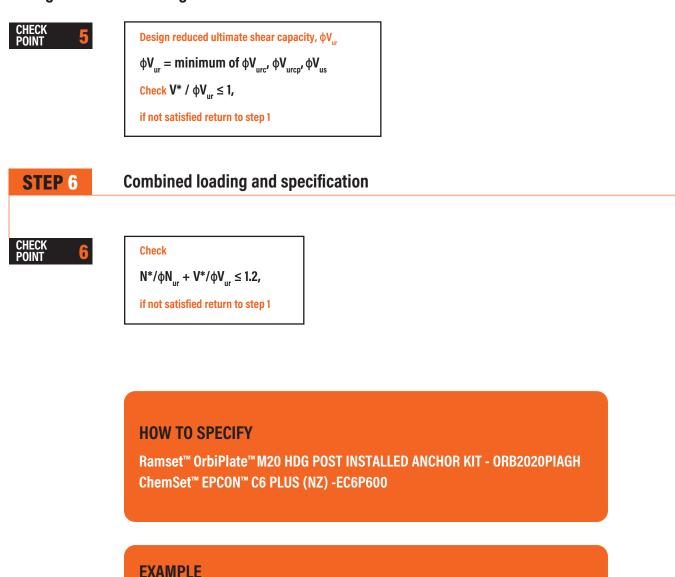
	J											
e/e _m	1.0	1.2	1.4	1.6	1.8	2.0	2.2	2.4	2.6	2.8	3.0	3.2
a/e _m												
1.0	0.67	0.84	1.03	1.22	1.43	1.65	1.88	2.12	2.36	2.62	2.89	3.16
1.5	0.75	0.93	1.12	1.33	1.54	1.77	2.00	2.25	2.50	2.76	3.03	3.31
2.0	0.83	1.02	1.22	1.43	1.65	1.89	2.12	2.38	2.63	2.90	3.18	3.46
2.5	0.92	1.11	1.32	1.54	1.77	2.00	2.25	2.50	2.77	3.04	3.32	3.61
3.0	1.00	1.20	1.42	1.64	1.88	2.12	2.37	2.63	2.90	3.18	3.46	3.76
3.5		1.30	1.52	1.75	1.99	2.24	2.50	2.76	3.04	3.32	3.61	3.91
4.0			1.62	1.86	2.10	2.36	2.62	2.89	3.17	3.46	3.75	4.05
4.5				1.96	2.21	2.47	2.74	3.02	3.31	3.60	3.90	4.20
5.0					2.33	2.59	2.87	3.15	3.44	3.74	4.04	4.35
5.5						2.71	2.99	3.28	3.71	4.02	4.33	4.65
6.0						2.83	3.11	3.41	3.71	4.02	4.33	4.65

For 3 anchors fastening and more

$$X_{ve} = \frac{3^{*}e + a_{1} + a_{2} + a_{3} + \dots + a_{n-1}}{3^{*}n^{*}e_{m}} \quad *\sqrt{e/e_{m}}$$

STEP 4

Strength Limit State Design / OrbiPlate[™] with M20 ChemSet[™] Anchor Stud with EPCON[™] C6 PLUS


Table 4e - Reduced characteristic ultimate concrete pryout capacity, φV_{ucp} (kN), $\varphi = 1/1.5 = 0.67$, $f'_c = 32$ MPa

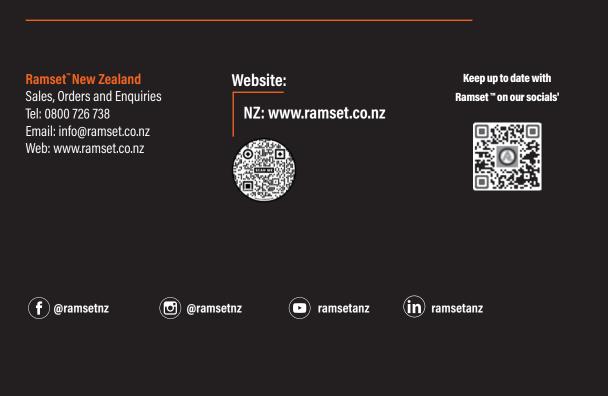
Anchor size, db OrbiPlate" with M20 ChemSet" Galvanised Anchor Stud installed with EPCON" C6 PLUS Effective depth, h (mm) Non-Cracked Concrete Cracked Concrete Seismic C1 Seismic C1 100 83.0 58.1 21.8 14.7 150 156.8 106.7 32.6 22.1 170 177.7 128.7 37.0 25.0 200 209.1 156.8 43.5 29.4 280 292.7 219.6 60.9 41.2	2
100 83.0 58.1 21.8 14.7 150 156.8 106.7 32.6 22.1 170 177.7 128.7 37.0 25.0 200 209.1 156.8 43.5 29.4	<i>,</i>
150 156.8 106.7 32.6 22.1 170 177.7 128.7 37.0 25.0 200 209.1 156.8 43.5 29.4	
170 177.7 128.7 37.0 25.0 200 209.1 156.8 43.5 29.4	
200 209.1 156.8 43.5 29.4	
200 292.7 219.0 00.9 41.7	
Note: Seismic effect for C1 & C2 includes annular gap reduction factor of 0.5	
Table 4f - Anchor at a corner effect, concrete edge shear, X _{vs} Note: For $e_1/e_2 > 1.25$, $X_{vs} = 1.0$	900
	900
Edge distance, e, (mm)	
50 0.86 0.77 0.67 0.52 0.44 0.39 0.37 0.35	0.33
Edge distance, e, (mm) Edge distance, e, (mm) 50 0.86 0.77 0.67 0.52 0.44 0.39 0.37 0.35 0 0 0.97 0.86 0.75 0.57 0.47 0.41 0.38 0.36	0.34
75 1.00 1.00 0.86 0.64 0.51 0.44 0.41 0.57	0.35
125 1.00 1.00 1.00 0.86 0.65 0.53 0.48 0.42	0.38
200 1.00 1.00 1.00 1.00 0.86 0.67 0.58 0.49 300 1.00 1.00 1.00 1.00 1.00 0.86 0.67 0.58 0.49	0.42
400 1.00 1.00 1.00 1.00 1.00 0.88 0.72 0.38	0.49
500 1.00 1.00 1.00 1.00 1.00 1.00 0.00 0	0.61
600 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.86	0.67
900 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1	0.86
4a Design reduced ultimate concrete edge shear capacity, ϕV_{urc} $\phi V_{urc} = \phi V_{uc} * X_{v,cr,seis} * X_{vc} * X_{vd} * X_{ve} * X_{vs}$	
4a Design reduced ultimate pryout capacity, ϕV_{urcp} $\phi V_{urcp} = \phi V_{ucp} * X_{n,cr,seis} * X_{nc} * X_{ne} * X_{na}$	
TEP 5 Verify anchor shear capacity - per anchor	
Table 5a - Reduced characteristic ultimate steel shear capacity, ϕV_{us} (kN) where ϕ_v = 0.67 and ϕ	V _{us,seis} (k

		Reduced Char, s	teel shear, φV _{us}	Reduced Char, seismic steel shear, $\varphi V_{\text{us,seis}}$		
	OrbiPlate™ with M20 ChemSet™ Galvanised Anchor Stud	Non-Cracked/Ci	racked Concrete	Seismic Category C1 & C2		
		Fixture Thic	kness (mm)	Fixture Thickness (mm)		
		6 to 16	16 > to 32	6 to 16	16 > to 32	
	ORB2020PIAGH	49.9	35.3	7.3	5.1	

Note: Seismic effect for C1 & C2 includes annular gap reduction factor of 0.5

Ramset[™] OrbiPlate[™] M20 HDG POST INSTALLED ANCHOR KIT

New Zealand ChemSet[™] EPCON[™] C6 PLUS EC6P600


Please refer to Ramset[™] product guides for the full range of products available.

Note: It is the Design Engineer's responsibility to ensure that the fixture plate is adequate for the design loads in accordance with AS 4100:2020 / AS 5216:2021 / NZS 3101:2006 (A3) Chapter 17

Important Disclaimer: Any engineering information or advice ("Information") provided by Ramset" in this document is issued in accordance with a prescribed standard, published performance data or design software. It is the responsibility of the user to obtain its own independent engineering (or other) advice to assess the suitability of the Information for its own requirements. To the extent permitted by law, Ramset "will not be liable to the recipient or any third party for any direct or indirect loss or liability arising out of, or in connection with, the Information.

Customer Service

Ramset™ 1 Ramset Drive, Chirnside Park 3116

Information in this document is correct at the time of printing. Readers should contact Ramset[™] or consult Ramset[™] detailed technical information to ensure product is suitable for intended use prior to purchase. ITW Australia Pty Ltd ABN 63 004 235 063 trading as Ramset[™] © Copyright 2025. [™] Trademarks of Cetram Pty. Ltd. Used under license by Ramset[™]

