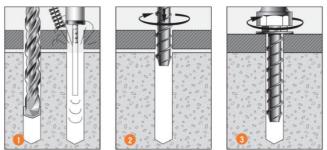


20/05/2025

TDS03183

Product


A seismic certified screw-in anchor for permanent anchoring into concrete. 6mm x 43m size is certified for seismic C1 applications.

Compliance

European Technical Assessment (option1) - ETA-24/0954 Design According to current standards:

- AS 5216
- AS 1170.4 Earthquake Actions
- EN 1992-4 (formerly ETAG001 Annex C, E & TR045)
- NZS 3101 (A3) Section 17 Seismic Design C1

Installation

1. Drill hole to correct diameter and depth. Important: Use Ramset[™] Dustless Drilling System to ensure holes are clean. Alternatively, clean thoroughly with brush and remove debris by way of vacuum or hand pump, compressed air etc.

2. Using a socket wrench, screw the AnkaScrew[™] Tapcon[™] Xtrem["] into the hole using slight pressure until the self-tapping action starts.

3. Tighten the AnkaScrew" Tapcon[™] Xtrem" until flush with fixture. If resistance is experienced when tightening, unscrew anchor one turnand re-tighten. Ensure not to over tighten. Refer to tightening torque for limitations.

Description and Part Numbers

Benefits, Advantages and Features

Fire tested

- Fire rated performance up to 120 minutes
- Highest level of European assessment for mechanical screw-in anchors
- Approved for all directions (floor, wall, overhead)
- Maximum Tensile & Shear capacities in cracked concrete
- Zinc plated steel (≥5um)
- Anchor diameter 6mm

Fast and easy to use:

- Install, simply screws into hole.
- Remove leaving an empty hole.

Close to edge and for close anchor spacing:

• Does not expand and burst concrete.

Principal Applications

- Seismic anchoring to Category C1
- Anchoring into cracked & non cracked concrete
- Steel framing
- Mechanical services
- Pallet racking
- Safety barriers
- Conveyors
- Handrails
- Bottom plates

Drilled hole diameter, dh (mm)	Effective Length, L _e	Maximum Fixture Thickness, t _{fix,max} (mm)	AnkaScrew™ Tapcon™ Xtrem Description™	Part No	Effective Depth, h _{ef} (mm) h _{ef} = Le – t t = total thickness of material(s) being fixed
6	34.5	3	6mm x 43mm zinc	AST06043X	

Ramset™ 1 Ramset Drive, Chirnside Park, Victoria. 3116. Australia © Copyright April 2025. ITW Australia Pty. Ltd. ABN 63 004 235 063 trading as Ramset™

Important Disclaimer: Any engineering information or advice ("Information") provided by Ramset™ in this document is issued in accordance with a prescribed standard, published performance data or design software. It is the responsibility of the user to obtain its own independent engineering (or other) advice to assess the suitability of the Information for its own requirements. To the extent ermitted by law, Ramset™ will not be liable to the recipient or any third party for any direct or indirect loss or liability arising out of, or in connection with, the Information.

AnkaScrew[™] Tapcon[™] Xtrem[™] 6mm x 43mm

No. of the local l

Date Reference

20/05/2025 TDS03183

Installation and Static and Seismic Performance details – per anchor

Cracked and Non-Cracked Concrete

Non-Cracke	Non-Cracked Concrete (static & quasi-static loading)												
	Drilled hole	Fixture hole	Anchor	Depth of	Tightening	Static Shear	Non-Cracked Concrete Tension, φN _{ur,ucr} (kN)**						
Part No.	diameter, d _h (mm)	diameter,d _f (mm)	depth, h _{ef} (mm)	drill hole, h1 (mm)	torque, T _r (Nm)	Resistance Steel, φV _{us}	Concrete Compressive Strength, f'c (MPa)						
		()	(1111)			(kN)*	20	25	30	40	50		
AST06043X	6	9	31.5	50	15	5.7	3.3	3.5	3.6	3.8	3.9		

Cracked Concrete (static & quasi-static loading)

	Drilled hole	Fixture hole	Anchor effective	Depth of	Tightening	Static Shear	Cracked Concrete Tension, $\phi N_{ur,cr}$ (kN)*)**
Part No.	diameter, d _h (mm)		depth. her	drill hole, h1 (mm)	torque, T _r (Nm)		Concrete Compressive Strength, f'c (MPa)				
							20	25	30	40	50
AST06043X	6	9	31.5	50	15	5.7	1.2	1.3	1.5	1.7	1.9

Data is based on optimum dimensions, anchor spacing a_c = 3* h_{ef} , = 94.5 mm and edge distance e_c = 1.5* h_{ef} = 47.3 mm

For shear loads acting towards an edge where optimum dimensions are not achievable, please use the simplified strength limit state design process to verify capacity or contact Ramset™ Engineer.

Minium concrete substrate thickness is $b_m = 80$ mm.

*Note: Shear Resistance is based on steel resistance of the anchor with no influencing edge or anchor spacing.

**Note: Reduced characteristic ultimate tensile capacity = φNur where φ=0.67 and Nur is based on characteristic ultimate pull-out tensile capacity.

Seismic – Category C1

Part No.	Drilled hole diameter,	Fixture hole	Anchor effective	Depth of drill hole.	Tightening torque, Tr	C1 Seismic Shear Resistance	C1 Seismic Cracked Concrete Tension, N _{Rd,seis,C1} (kN)##				
Part No.	d _h (mm)	diameter,d _f (mm)	depth, h _{ef} (mm)	h₁ (mm)	(Nm)	Steel, V _{Rd,s,seis}	Concrete Compressive Strength, f'c (MPa)				
		. ,	. ,			(kN)#	20	25	30	40	50
AST06043X	6	9	31.5	50	15	1.2	0.9	1.0	1.1	1.3	1.4

Data is based on optimum dimensions, anchor spacing $a_c = 3^*h_{ef}$, = 94.5 mm and edge distance $e_c = 1.5^*h_{ef} = 47.3$ mm

For shear loads acting towards an edge where optimum dimensions are not achievable, please use the simplified strength limit state design process to verify capacity or contact Ramset™ Engineer.

Minium concrete substrate thickness is $b_m = 80$ mm.

#Note: Shear Resistance is based on steel resistance of the anchor with no influencing edge or anchor spacing.

Data includes annular gap reduction factor of 0.5

For single anchor values: Multiply V_{Rd,s,seis}* 1.17

##Note: Reduced characteristic ultimate tensile capacity is governed by Pull-out resistance.

For single anchor values: Multiply N_{Rd,seis,C1} * 1.17

For further information, please contact Ramset[™]

AU-PHONE: 1300780063 www.ramset.com.au

NZ - PHONE: 1800 RAMSET (726738) www.ramset.co.nz

Ramset™ 1 Ramset Drive, Chirnside Park, Victoria. 3116. Australia © Copyright April 2025. ITW Australia Pty. Ltd. ABN 63 004 235 063 trading as Ramset™

Important Disclaimer: Any engineering information or advice ("Information") provided by Ramset[™] in this document is issued in accordance with a prescribed standard, published performance data or design software. It is the responsibility of the user to obtain its own independent engineering (or other) advice to assess the suitability of the Information for its own requirements. To the extent permitted by law, Ramset[™] will not be liable to the recipient or any third party for any direct or indirect loss or liability arising out of, or in connection with, the Information.

AnkaScrew[™] Tapcon[™] Xtrem[™] 6mm x 43mm

Date 20/05 Reference TDS0

20/05/2025 TDS03183

Installation and Fire Performance details - per anchor

Part No.	Drilled	Fixture	re Anchor	Dopth of	Tightoning	Minimum Concrete	Optimum dimensions* (Fire Performance)		
	hole diameter, d₁ (mm)	hole diameter, d _f (mm)	effective depth, h _{ef} (mm)	Depth of drill hole, h1 (mm)	Tightening torque, T _r (Nm)	substrate thickness, b _m (mm) ***	Anchor spacing, a _c (mm)	Edge** distance, e _c (mm)	
AST06043X	6	9	31.5	50	15	80	126.0	63.0	

*Note: For anchor spacings and edge distance less than the optimum dimensions, please contact your local Ramset Engineer.

**Note: If the fire attack is from more than one side, the edge distance of the anchor shall be ≥ 300 mm.

***Note: For performance based on smaller concrete substrate thickness, refer to iExpert Anchor Software or Ramset™ Engineer.

Tension – Fire Performance

Part No.	Drilled hole	Anchor effective	Characteristic Resistance Mode of Failure	Characteristic values of resistance to tension loads in 20 MPa to 50 MPa concrete strength					
i ultiloi	diameter, dh (mm)	depth, h _{ef} (mm)		Fire re	Fire resistance duration (minutes)		ıtes)		
		()		30 60 90		120			
		31.5	Steel Failure - N _{Rk,s,fi} (kN)	1.00	1.00	0.70	0.54		
AST06043X	6		Pull-out failure concrete - $N_{Rk,p,fi}$ (kN)	0.60	0.60	0.60	0.50		
			Concrete cone failure - N _{Rk,c,fi} (kN)	1.20	1.20	1.20	1.00		

Note: Bold values indicate limiting load. Data in table lists all possible failure mechanisms due to fire.

Shear – Fire Performance

Part No. di	Drilled hole diameter, d₁(mm)	Anchor effective depth, h _{ef}	Characteristic Resistance Mode of Failure	Characteristic values of resistance to shear loads in 20 MPa concrete strength Fire resistance duration (minutes)				
	u _h (mm)	(mm)		30	60	90	120	
			*Steel Failure - V _{Rk,s,fi} (kN)	1.00	1.00	0.70	0.54	
ACTOCO 40V	0	<u>о1 г</u>	Steel Failure with lever arm - $M^0_{\text{Rk},\text{p},\text{fi}}$ (kNm)	0.76	0.76	0.53	0.41	
AST06043X	6	31.5	**Concrete edge failure - V _{Rk,c,fi} (kN)	1.00	1.00	1.00	0.80	
			Concrete Pry-out failure - V _{Rk,cp,fi} (kN)	1.20	1.20	1.20	1.00	

*Note 1: Bold values indicate limiting load for conditions without lever arm. Data in table lists all possible failure mechanisms due to fire.

**Note 2: Concrete edge failure based on optimal concrete edge distance for fire performance ec = 2xhef = 63 mm.

For further information, please contact Ramset[™]

AU-PHONE: 1300 780 063 www.ramset.com.au

NZ - PHONE: 1800 RAMSET (726738) www.ramset.co.nz

Ramset™ 1 Ramset Drive, Chirnside Park, Victoria. 3116. Australia © Copyright April 2025. ITW Australia Pty. Ltd. ABN 63 004 235 063 trading as Ramset™

Important Disclaimer: Any engineering information or advice ("Information") provided by Ramset[™] in this document is issued in accordance with a prescribed standard, published performance data or design software. It is the responsibility of the user to obtain its own independent engineering (or other) advice to assess the suitability of the Information for its own requirements. To the extent permitted by law, Ramset[™] will not be liable to the recipient or any third party for any direct or indirect loss or liability arising out of, or in connection with, the Information.