

Czech Republic eota@tzus.cz

European Technical Assessment

ETA 18/0675 of 08/07/2024

Technical Assessment Body issuing the ETA: Technical and Test Institute

for Construction Prague

Trade name of the construction product ChemSet™ Reo502™ Plus

ChemSet[™] Epcon[™] C6 Plus ChemSet[™] Epcon[™] G5 PRO

Product family to which the construction

product belongs

Product area code: 33

Bonded injection type anchor for use in

cracked and uncracked concrete

Manufacturer Ramsetreid

A Division of ITW Australia Pty Ltd

1 Ramset Drive, Chirnside Park. Vic 3116

Australia

Manufacturing plant Ramsetreid Plant 3

This European Technical Assessment

contains

23 pages including 20 Annexes which form

an integral part of this assessment.

This European Technical Assessment is issued in accordance with regulation

(EU) No 305/2011, on the basis of

EAD 330499-01-0601

Bonded fasteners for use in concrete

This version replaces

ETA 18/0675 issued on 06/06/2021

Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and should be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full (excepted the confidential Annex(es) referred to above). However, partial reproduction may be made, with the written consent of the issuing Technical Assessment Body - Technical and Test Institute for Construction Prague. Any partial reproduction has to be identified as such.

1. Technical description of the product

The ChemSet[™] Reo502[™] Plus, ChemSet[™] Epcon[™] C6 Plus, ChemSet[™] Epcon[™] G5 PRO with steel elements is bonded anchor (injection type).

Steel elements can be galvanized or stainless steel threaded rods or rebars.

Steel element is placed into a drilled hole filled with injection mortar. The steel element is anchored via the bond between metal part, injection mortar and concrete. The anchor is intended to be used with various embedment depth up to 20 diameters.

The illustration and the description of the product are given in Annex A.

2. Specification of the intended use in accordance with the applicable EAD

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The provisions made in this European Technical Assessment are based on an assumed working life of the anchor of 50 years and 100 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the products in relation to the expected economically reasonable working life of the works.

3. Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic resistance to tension load (static and quasi-static loading)	See Annex C 1 to C 5
Characteristic resistance to shear load (static and quasi-static loading)	See Annex C 6 to C 7
Displacements under short-term and long-term loading	See Annex C 8
Characteristic resistance and displacement for seismic performance categories C1 and C2	See Annex C 9 to C 11

3.2 Hygiene, health and environment (BWR 3)

No performance determined.

3.3 General aspects relating to fitness for use

Durability and serviceability are only ensured if the specifications of intended use according to Annex B 1 are kept.

4. Assessment and verification of constancy of performance (AVCP) system applied with reference to its legal base

According to the Decision 96/582/EC of the European Commission¹ the system of assessment verification of constancy of performance (see Annex V to Regulation (EU) No 305/2011) given in the following table apply.

Product	Intended use	Level or class	System
Metal anchors for	For fixing and/or supporting to concrete,		
use in concrete	structural elements (which contributes to	-	1
	the stability of the works) or heavy units		

Official Journal of the European Communities L 254 of 08.10.1996

_

5. Technical details necessary for the implementation of the AVCP system, as provided in the applicable EAD

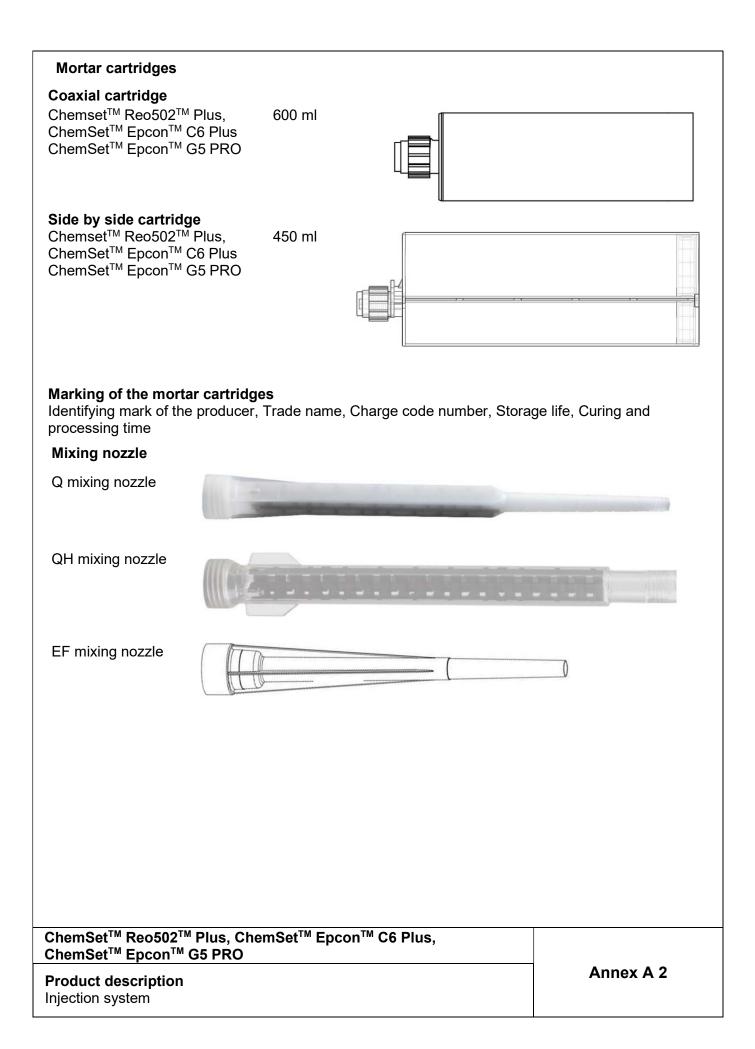
The factory production control shall be in accordance with the control plan which is a part of the technical documentation of this European Technical Assessment. The control plan is laid down in the context of the factory production control system operated by the manufacturer and deposited at Technický a zkušební ústav stavební Praha, s.p.² The results of factory production control shall be recorded and evaluated in accordance with the provisions of the control plan.

Issued in Prague on 08.07.2024

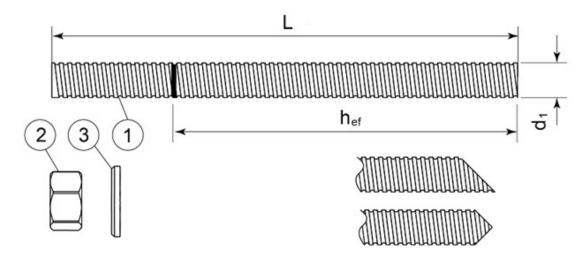
Ву

Ing. Jiří Studnička, Ph.D. Head of the Technical Assessment Body

Czech Republic


O Czech Republic

Page 3 of 23 ETA 18/0675 issued on 08/07/2024 and replacing ETA 18/0675 issued on 06/06/2021


The control plan is a confidential part of the documentation of the European Technical Assessment, but not published together with the ETA and only handed over to the approved body involved in the procedure of AVCP.

Threaded rod Reinforcing bar ChemSet[™] Reo502[™] Plus, ChemSet[™] Epcon[™] C6 Plus, ChemSet[™] Epcon[™] G5 PRO Annex A 1

Product description Installed conditions

Threaded rod M8, M10, M12, M16, M20, M24, M27, M30

Standard commercial threaded rod with marked embedment depth

Dart	Designation	Material							
Part	Designation								
	Steel, zinc plated ≥ 5 µm acc. to EN ISO 4042 or Steel, Hot-dip galvanized ≥ 40 µm acc. to EN ISO 1461 and EN ISO 10684 or								
	Steel, not-dip galvanized ≥ 40 µm acc. to EN 130 1461 and EN 130 10664 or Steel, zinc diffusion coating ≥ 15 µm acc. to EN 13811								
Oteci,		Steel, EN 10087 or EN 10263							
1	Anchor rod	·							
	Have gen nut	Property class 4.6, 5.8, 8.8, 10.9* EN ISO 898-1							
2	Hexagon nut	According to threaded rod, EN 20898-2							
-	EN ISO 4032								
	Washer								
3	EN ISO 887, EN ISO 7089,	According to threaded rod							
	EN ISO 7093 or EN ISO 7094								
Staini	ess steel								
1	Anchor rod	Material: A2-70, A4-70, A4-80, EN ISO 3506							
2	Hexagon nut	According to threaded rod							
	EN ISO 4032	7 toostaming to amedada rea							
	Washer								
3	EN ISO 887, EN ISO 7089,	According to threaded rod							
	EN ISO 7093 or EN ISO 7094								
High	corrosion resistant steel								
1	Anchor rod	Material: 1.4529, 1.4565, EN 10088-1							
2	Hexagon nut	According to threaded rod							
	EN ISO 4032	7 toolang to threaded for							
	Washer								
3	EN ISO 887, EN ISO 7089,	According to threaded rod							
	EN ISO 7093 or EN ISO 7094								

^{*}Galvanized rod of high strength are sensitive to hydrogen induced brittle failure

ChemSet [™] Reo502 [™] Plus, ChemSet [™] Epcon [™] C6 Plus, ChemSet [™] Epcon [™] G5 PRO	
Product description Threaded rod and materials	Annex A 3

Rebar Ø8, Ø10, Ø12, Ø16, Ø20, Ø25, Ø32

Standard commercial reinforcing bar with marked embedment depth

Product form	Bars and de	-coiled rods		
Class	В	С		
Characteristic yield strength fyk or fo	_{0,2k} (MPa)	400 t	o 600	
Minimum value of $k = (f_t/f_y)_k$	≥ 1,08 ≥ 1,15 < 1,35			
Characteristic strain at maximum for	characteristic strain at maximum force ε _{uk} (%)			
Bendability	endability			
Maximum deviation from nominal	Nominal bar size (mm)			
mass (individual bar) (%)	≤ 8	±6,0		
	±4	, ,5		
Bond: Minimum relative rib area,	Nominal bar size (mm)			
$f_{R,min}$	0,0)40		
	> 12	0,0)56	

ChemSet [™] Reo502 [™] Plus, ChemSet [™] Epcon [™] C6 Plus, ChemSet [™] Epcon [™] G5 PRO	
Product description Rebars and materials	Annex A 4

Specifications of intended use

Anchorages subject to:

- Static and quasi-static load
- Seismic actions category C1 (max w = 0,5 mm):
 - threaded rod size M8, M10, M12, M16, M20, M24, M27, M30
 - rebar size Ø10, Ø12, Ø16, Ø20, Ø25, Ø32
- Seismic actions category C2 (max w = 0,8 mm): threaded rod size M12, M16, M20

Base materials

- · Cracked and uncracked concrete
- Reinforced or unreinforced normal weight concrete of strength class C20/25 at minimum and C50/60 at maximum according EN 206:2013.

Temperature range:

• -40°C to +70°C (max. short. term temperature +70°C and max. long term temperature +50°C)

Use conditions (Environmental conditions)

- (X1) Structures subject to dry internal conditions (zinc coated steel, stainless steel, high corrosion resistance steel).
- (X2) Structures subject to external atmospheric exposure (including industrial and marine environment) and to permanently damp internal condition, if no particular aggressive conditions exist (stainless steel A4, high corrosion resistant steel).
- (X3) Structures subject to external atmospheric exposure and to permanently damp internal condition, if other particular aggressive conditions exist (high corrosion resistant steel).

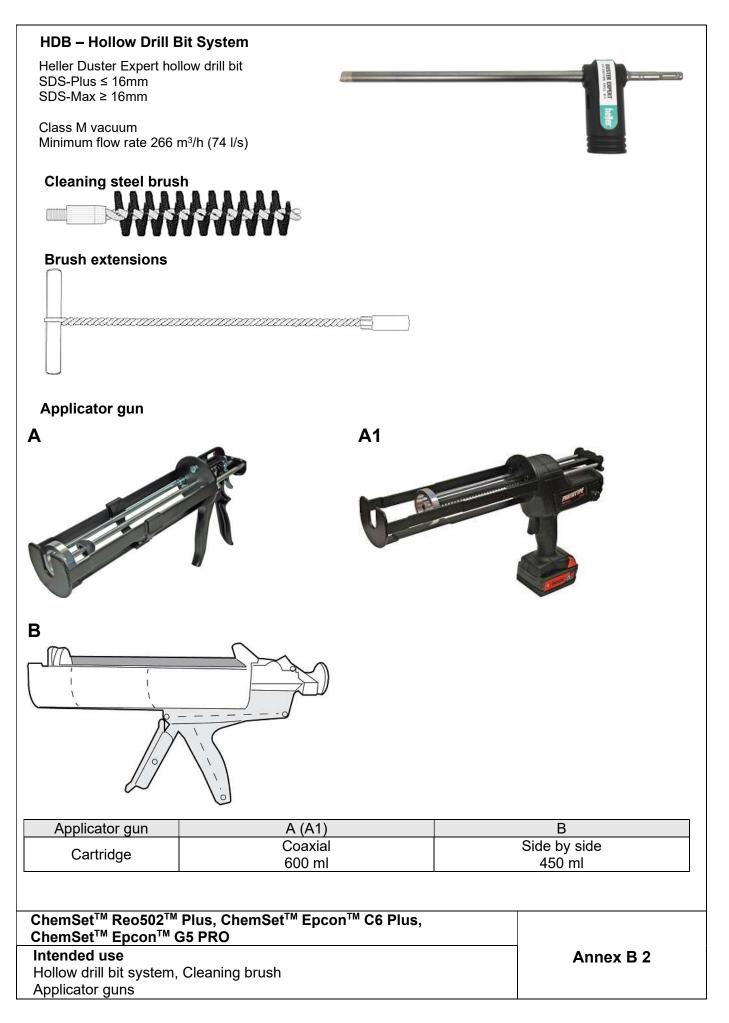
Note: Particular aggressive conditions are e.g. permanent, alternating immersion in seawater or the splash zone of seawater, chloride atmosphere of indoor swimming pools or atmosphere with extreme chemical pollution (e.g. in desulphurization plants or road tunnels where de-icing materials are used).

Concrete conditions:

- I1 installation in dry or wet (water saturated) concrete and use in service in dry or wet concrete.
- 12 installation in water-filled (not sea water) and use in service in dry or wet concrete

Design:

- The anchorages are designed in accordance with the EN 1992-4 under the responsibility of an engineer experienced in anchorages and concrete work.
- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The position of the anchor is indicated on the design drawings.
- Anchorages under seismic actions (cracked concrete) have to be designed in accordance with EN 1992-4.

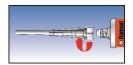

Installation:

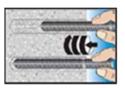
- Hole drilling by hammer drilling, dustless drilling or diamond core drilling mode.
- Anchor installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site.

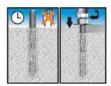
Installation direction:

• D3 – downward and horizontal and upwards (e.g. overhead) installation

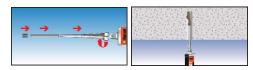
ChemSet [™] Reo502 [™] Plus, ChemSet [™] Epcon [™] C6 Plus, ChemSet [™] Epcon [™] G5 PRO	
Intended use Specifications	Annex B 1


SOLID SUBSTRATE INSTALLATION METHOD


- 1. Using the SDS hammer drill (HD) in rotary hammer mode for drilling, with a carbide tipped drill bit of the appropriate size, drill the hole to the specified hole diameter and depth.
- 2. Select the correct air lance, insert to the bottom of the hole, and depress the trigger for 2 seconds. The compressed air must be clean and free from water and oil, with a minimum pressure of 90 psi (6 bar). Perform the blowing operation twice.
- 3. Select the correct size hole cleaning brush. Ensure that the brush is in good condition and of the correct diameter. Insert the brush to the bottom of the hole, using a brush extension if needed to reach the bottom. Withdraw with a twisting motion. There should be a positive interaction between the bristles of the brush and the sides of the drilled hole. Perform the brushing operation twice.
- 4. Repeat step 2 (blowing operation x2)
- 5. Repeat step 3 (brushing operation x2)
- 6. Repeat step 2 (blowing operation x2)



- 7. Select the most appropriate static mixer nozzle, checking that the mixing elements are present and fit for purpose. Never modify the mixer. Attach the mixer nozzle to the cartridge. Check the dispensing tool is in good working order. Place the cartridge into the dispensing tool.
- 8. Extrude some resin to waste until an even coloured mixture is achieved. The cartridge is now ready for use.
- 9. Insert the mixing nozzle to the bottom of the hole. Extrude the resin and slowly withdraw the nozzle from the hole. Ensure no air voids are created as the nozzle is withdrawn. Inject resin until the hole is approximately ¾ full and remove the nozzle from the hole



- 10. Select the steel anchor element ensuring it is free from oil or other contaminants, and mark with the required embedment depth. Insert the steel element into the hole using a back and forth twisting motion to ensure complete cover, until it reaches the bottom of the hole. Excess resin will be expelled from the hole evenly around the steel element and there shall be no gaps between the anchor element and the wall of the drilled hole.
- 11. Clean any excess resin from around the mouth of the hole.
- 12. Refer to the working and loading times within the tables to determine the appropriate cure time.
- 13. Position the ¬fixture and tighten the anchor to the appropriate installation torque. Do not overtorque the anchor, as this could adversely affect its performance.

ChemSet [™] Reo502 [™] Plus, ChemSet [™] Epcon [™] C6 Plus, ChemSet [™] Epcon [™] G5 PRO	
Intended use Installation procedure	Annex B 3

DEEP EMBEDMENT & OVERHEAD INSTALLATION METHOD

1a. Perform steps 1-8 under "solid substrate installation method".

- 2a. Attach the correct diameter and length extension tube to the nozzle. Select the correct diameter resin stopper for the application, then push and screw the extension tube into the resin stopper. This is held in place with a coarse internal thread. The resin stopper is a reusable accessory.
- 3a. Push the resin stopper and extension tube to the back of the drill hole.
- 4a. Ensure the extension tube is angled to allow free movement of the resin stopper as the resin is extruded.
- 5a. Continue from step 10 under "solid substrate installation method"

DIAMOND CORE DRILLING

- 1b. Using a diamond core drill (DD) and following the manufacturer's instructions, drill the specified diameter hole to the correct embedment depth then remove the concrete core.
- 2b. Starting from the back of the hole, flush with pressurised water a minimum of two times and until there is only clean water.
- 3b. Select the correct size hole cleaning brush. Ensure that the brush is in good condition and of the correct diameter. Insert the brush to the bottom of the hole, using a brush extension if needed to reach the bottom. Withdraw with a twisting motion. There should be a positive interaction between the bristles of the brush and the sides of the drilled hole. Perform the brushing operation twice.
- 4b. Repeat step 2b (flushing operation x2).
- 5b. Repeat step 3b (brushing operation x2).
- 6b. Using the correct air lance and starting from the back of the hole and withdrawing, perform a minimum of two blowing operations and ensure that the hole is clear of debris and excess water.
- 7b. Continue from step 7 under "solid substrate installation method".

DUSTLESS DRILLING

- 1b. Using the speci¬fied hollow drill bit (HDB) and vacuum system and following the manufacturer's instructions, drill the speci¬fied diameter hole to the correct embedment depth. Ensure that the minimum vacuum specifi¬cations are met and that the vacuum is turned on.
- 2b. The hole should be inspected to ensure the system has worked correctly. If the hole is clear of dust and debris, no further cleaning is required.
- 3b. Continue from step 7 under "solid substrate installation method".

ChemSet [™] Reo502 [™] Plus, ChemSet [™] Epcon [™] C6 Plus, ChemSet [™] Epcon [™] G5 PRO	
Intended use Installation procedure	Annex B 4

Table B1: Installation parameters of threaded rod

Size			M8	M10	M12	M16	M20	M24	M27	M30
Nominal drill hole diameter	$ \emptyset d_0 $	[mm]	10	12	14	18	22	26	30	35
Cleaning brush			S11HF	S14HF	S14/15HF	S22HF	S24HF	S31HF	S31HF	S38HF
Torque moment	max T _{fixt}	[Nm]	10	20	40	80	120	160	180	200
Embedment depth for hef,min	h _{ef}	[mm]	60	60	70	80	90	96	108	120
Embedment depth for hef,max	h _{ef}	[mm]	160	200	240	320	400	480	540	600
Depth of drill hole	h_0	[mm]	h _{ef} +5	h _{ef} +5	h _{ef} +5	h _{ef} +5	h _{ef} +5	h _{ef} +5	h _{ef} +5	h _{ef} +5
Minimum edge distance	Cmin	[mm]	40	40	40	40	50	50	50	60
Minimum spacing	Smin	[mm]	40	40	40	40	50	50	50	60
Minimum thickness of member	h _{min}	[mm]	h _{ef} +	30 mm ≥ 1	100 mm	h _{ef} + 2d ₀				

Table B2: Installation parameters of rebar

Size			Ø8	Ø10	Ø12	Ø16	Ø20	Ø25	Ø32
Nominal drill hole diameter	Ød ₀	[mm]	12	14	16	20	25	32	40
Cleaning brush			S12/13HF	S14/15HF	S18HF	S22HF	S27HF	S35HF	S43HF
Torque moment	max T _{fixt}	[Nm]	10	20	40	80	120	180	200
Embedment depth for hef,min	h _{ef}	[mm]	60	60	70	80	90	100	128
Embedment depth for hef,max	h _{ef}	[mm]	160	200	240	320	400	500	640
Depth of drill hole	h ₀	[mm]	h _{ef} +5	h _{ef} +5	h _{ef} +5	h _{ef} +5	h _{ef} +5	h _{ef} +5	h _{ef} +5
Minimum edge distance	Cmin	[mm]	40	40	40	40	50	50	70
Minimum spacing	Smin	[mm]	40	40	40	40	50	50	70
Minimum thickness of member	h _{min}	[mm]	h _{ef} + :	30 mm ≥ 100) mm	h _{ef} + 2d ₀			

Table B3: Minimum curing time

Table Do. Willimmann caring th	110								
Base Material Temperature	Cartridge	T Work	T Load						
[°C]	Temperature [°C]	[mins]	[hrs]						
+5		300	24						
+5°C to +10	Minimum +10	150	24						
+10°C to +15	+10°C to +15	40	18						
+15°C to +20	+15°C to +20	25	12						
+20°C to +25	+20°C to +25	18	8						
+25°C to +30	+25°C to +30	12	6						
+30°C to +35	+30°C to +35	8	4						
+35°C to +40	+35°C to +40	6	2						
	Ensure cartridge is ≥ 10°C								

T Work is typical gel time at highest base material temperature in the range.

ChemSet [™] Reo502 [™] Plus, ChemSet [™] Epcon [™] C6 Plus, ChemSet [™] Epcon [™] G5 PRO	
Intended use	Annex B 5
Installation parameters	
Curing time	

T Load is minimum set time required until load can be applied at the lowest temperature in the range.

Table C1: Design method EN 1992-4 Steel failure - Characteristic values of resistance to tension load of threaded rod

Steel failure - Characteristic resista	nce									
Size			M8	M10	M12	M16	M20	M24	M27	M30
Steel grade 4.6	$N_{Rk,s}$	[kN]	15	23	34	63	98	141	184	224
Partial safety factor	γMs	[-]				2,	00			
Steel grade 5.8	$N_{Rk,s}$	[kN]	18	29	42	79	123	177	230	281
Partial safety factor	γMs	[-]				1,	50			
Steel grade 8.8	$N_{Rk,s}$	[kN]	29	46	67	126	196	282	367	449
Partial safety factor	γMs	[-]	1,50							
Steel grade 10.9	$N_{Rk,s}$	[kN]	37	58	84	157	245	353	459	561
Partial safety factor	γMs	[-]				1,	33			
Stainless steel grade A2-70, A4-70	$N_{Rk,s}$	[kN]	26	41	59	110	172	247	321	393
Partial safety factor	γMs	[-]				1,	87			
Stainless steel grade A4-80	$N_{Rk,s}$	[kN]	29	46	67	126	196	282	367	449
Partial safety factor	γMs	[-]				1,	60			
Stainless steel grade 1.4529	$N_{Rk,s}$	[kN]	26	41	59	110	172	247	321	393
Partial safety factor	γMs	[-]				1,	50			
Stainless steel grade 1.4565	$N_{Rk,s}$	[kN]	26	41	59	110	172	247	321	393
Partial safety factor	γMs	[-]				1,	87			

Table C2: Design method EN 1992-4
Steel failure - Characteristic values of resistance to tension load of rebar

Steel failure – Characteristic resistance									
Size			Ø8	Ø10	Ø12	Ø16	Ø20	Ø25	Ø32
Rebar BSt 500 S	$N_{Rk,s}$	[kN]	28	43	62	111	173	270	442
Partial safety factor	γMs	[-]				1,4			

ChemSet [™] Reo502 [™] Plus, ChemSet [™] Epcon [™] C6 Plus, ChemSet [™] Epcon [™] G5 PRO	
Performances Steel failure characteristic resistance	Annex C 1

Table C3: Design method EN 1992-4 Characteristic values of resistance to tension load of threaded rod

Combined pullout and concre	te cone fa	ailure i	in concre	te C20/	25						
Hammer drilling, Dustless drilling											
Size				M8	M10	M12	M16	M20	M24	M27	M30
Characteristic bond resistan	ce in unc	racke	d concre	te for a	worki	ng life	of 50 y	ears a	nd 100	years	
Dry and wet concrete, Flooded h			[N/mm ²]		15,0	15,0	12,0	12,0	12,0	11,0	9,5
Installation safety factor for Dry and Wet concrete, Flooded hole											
Dry, wet concrete		γinst	[-]					,0			
Hammer drilling – Flooded hole	•	γinst	[-]				1	,0			
Dustless drilling – Flooded hole	•	γinst	[-]				1	,2			
Characteristic bond resistance in cracked concrete for a working life of 50 years and 100 years											
Dry and wet concrete, Flooded h	nole	τRk,cr	[N/mm ²]	10,0	10,0	10,0	9,5	9,0	9,0	6,0	6,0
Installation safety factor for I	Ory and V	Net co	ncrete, F	loode	d hole						
Dry, wet concrete		γinst	[-]				1	,0			
Hammer drilling – Flooded hole		γinst	[-]				1	,0			
Dustless drilling – Flooded hole	9	γinst	[-]				1	,2			
Factor for influence of sustained	load	0	гэ				0	70			
for a working life 50 years		ψ^0 sus	[-]				U,	72			
	C25/30						1,	02			
	C30/37			1,04							
Factor for concrete	C35/45		r 1	1,06							
C40/50 C45/55		ψс	[-]				1,	07			
							1,	80			
	C50/60										

Concrete cone failure			
Factor for concrete cone failure for uncracked concrete	k _{ucr,N}	[]	11
Factor for concrete cone failure for cracked concrete	k _{cr,N}	[-]	7,7
Edge distance	C _{cr,N}	[mm]	1,5 h _{ef}

Splitting failure										
Size			M8	M10	M12	M16	M20	M24	M27	M30
Edge distance	C _{cr,sp}	[mm]	2 h _{ef}							
Spacing	Scr,sp	[mm]	2 c _{cr,sp}							

ChemSet [™] Reo502 [™] Plus, ChemSet [™] Epcon [™] C6 Plus, ChemSet [™] Epcon [™] G5 PRO	
Performances	Annex C 2
Hammer drilling, Dustless drilling	
Characteristic resistance for tension loads - threaded rod	

Table C4: Design method EN 1992-4 Characteristic values of resistance to tension load of rebar

Combined pullout and concre	te cone fa	ilure i	n concret	e C20/2	5					
Hammer drilling, Dustless d	rilling									
Size				Ø8	Ø10	Ø12	Ø16	Ø20	Ø25	Ø32
Characteristic bond resistar	nce in und	cracke	ed concre	ete for a	workin	g life of	50 years	and 10	0 years	
Dry and wet concrete, Flooded	hole	τ _{Rk,ucr}	[N/mm ²]	13,0	13,0	13,0	12,0	12,0	12,0	8,0
Installation safety factor for Dry and Wet concrete, Flooded hole										
Hammer drilling - Dry, wet con	ncrete	γinst	[-]				1,0			
Dustless drilling - Dry, wet con	ncrete	γinst	[-]				1,2			
Flooded hole		γinst	[-]				1,2			
Characteristic bond resistar	nce in cra	cked	concrete	for a w	orking li	fe of 50	years a	nd 100 y	ears	
Dry and wet concrete, Flooded	hole	τ _{Rk,cr}	[N/mm ²]	8,0	11,0	10,0	10,0	9,0	8,5	6,5
Installation safety factor for	Dry and \	Wet c	oncrete,	Floode	d hole					
Hammer drilling - Dry, wet con	ncrete	γinst	[-]				1,0			
Dustless drilling - Dry, wet con	ncrete	γinst	[-]				1,2			
Flooded hole		γinst	[-]				1,2			
Factor for influence of sustaine for a working life 50 years	ed load	ψ^0_{sus}	[-]				0,72			
C25/30 C30/37 C35/45 Factor for concrete C40/50		Ψc [-]		1,02 1,04 1,06						
	C45/55 C50/60			1,07 1,08 1,09						

Concrete cone failure			
Factor for concrete cone failure for uncracked concrete	k _{ucr,N}	r 1	11
Factor for concrete cone failure for cracked concrete	k _{cr,N}	[-]	7,7
Edge distance	Ccr,N	[mm]	1,5 h _{ef}

Splitting failure					_			_	
Size			Ø8	Ø10	Ø12	Ø16	Ø20	Ø25	Ø32
Edge distance	C _{cr,sp}	[mm]				2 h _{ef}			
Spacing	Scr,sp	[mm]				2 c _{cr,sp}			

ChemSet [™] Reo502 [™] Plus, ChemSet [™] Epcon [™] C6 Plus, ChemSet [™] Epcon [™] G5 PRO	
Performances	Annex C 3
Hammer drilling, Dustless drilling	
Characteristic resistance for tension loads - rebar	

Table C5: Design method EN 1992-4 Characteristic values of resistance to tension load of threaded rod

Combined pullout and concrete cone f	ailure	in concre	te C20/	25							
Diamond core drilling							<u> </u>				
Size			M8	M10	M12	M16	M20	M24	M27	M30	
Characteristic bond resistance in un	cracke	d concre	te for a	worki	ng life	of 50 y	ears a	nd 100	years		
Dry and wet concrete, Flooded hole		[N/mm ²]		15,0	15,0	12,0	12,0	12,0	11,0	9,5	
Installation safety factor for Dry and Wet concrete, Flooded hole											
Dry, wet concrete	ry, wet concrete γ_{inst} [-] 1,0										
Flooded hole	γinst	[-]	1,2								
Characteristic bond resistance in cracked concrete for a working life of 50 years											
Dry and wet concrete, Flooded hole	τRk,cr	[N/mm ²]	10,0	10,0	10,0	9,5	8,5	9,0	6,0	6,0	
Characteristic bond resistance in cracked concrete for a working life of 100 years											
Dry and wet concrete, Flooded hole	τ _{Rk,cr}	[N/mm ²]	8,5	9,0	9,0	8,5	8,0	8,0	6,0	5,5	
Installation safety factor for Dry and	Wet co	ncrete, F	loode	d hole							
Dry, wet concrete	γinst	[-]				1	,0				
Flooded hole	γinst	[-]				1	,2				
Factor for influence of sustained load for a working life 50 years	ψ^0_{sus}	[-]				0,	76				
C25/30							02				
C30/37							04				
Factor for concrete C35/45	1111-	[-]					06 07				
C40/50	•						07				
C45/55							80				
C50/60						1,	09				

Concrete cone failure			
Factor for concrete cone failure for uncracked concrete	k _{ucr,N}		11
Factor for concrete cone failure for cracked concrete	k _{cr,N}	[-]	7,7
Edge distance	C _{cr,N}	[mm]	1,5 h _{ef}

Splitting failure					_					
Size			M8	M10	M12	M16	M20	M24	M27	M30
Edge distance	C _{cr,sp}	[mm]	2 h _{ef}							
Spacing	Scr,sp	[mm]	2 C _{cr,sp}							·

ChemSet [™] Reo502 [™] Plus, ChemSet [™] Epcon [™] C6 Plus, ChemSet [™] Epcon [™] G5 PRO	
Performances	Annex C 4
Diamond core drilling	
Characteristic resistance for tension loads - threaded rod	

Table C6: Design method EN 1992-4 Characteristic values of resistance to tension load of rebar

Combined nullout and concr	oto cono fo	ilwa i	n conorot	- C20/2	E						
Combined pullout and concr Diamond core drilling	ete cone la	llure i	n concret	e C20/2	<u> </u>						
Size				Ø8	Ø10	Ø12	Ø16	Ø20	Ø25	Ø32	
							10 10	10 - 0		, D3Z	
Characteristic bond resista											
Dry and wet concrete, Flooded	d hole	$\tau_{\text{Rk,ucr}}$	[N/mm ²]	13,0	12,0	13,0	12,0	11,0	11,0	8,0	
Installation safety factor for Dry and Wet concrete, Flooded hole											
Dry, wet concrete		γinst	[-]	1,0							
Flooded hole		γinst	[-]	1,2							
Characteristic bond resistance in cracked concrete for a working life of 50 years											
Dry and wet concrete, Flooded	d hole	τ _{Rk,cr}	[N/mm ²]	8,0	8,0	8,0	8,0	7,0	6,5	6,0	
Characteristic bond resistance in cracked concrete for a working life of 100 years											
Dry and wet concrete, Flooded	d hole	τ _{Rk,cr}	[N/mm ²]	6,5	7,0	7,0	7,0	7,0	6,0	5,5	
Installation safety factor fo	r Dry and \	Wet c	oncrete,	Floode	d hole						
Dry, wet concrete		γinst	[-]				1,0				
Flooded hole		γinst	[-]				1,2				
Factor for influence of sustain	ned load	Ψ^0_{sus}	[-]				0,76				
for a working life 50 years	005/00	,									
	C25/30						1,02				
	C30/37						1,04				
Factor for concrete	C35/45	Ψс	[-]				1,06				
	C40/50	1 -	.,				1,07				
	C45/55						1,08				
	C50/60						1,09				

Concrete cone failure											
Factor for concrete cone failure for uncracked concrete	k _{ucr,N}	. 1	11								
Factor for concrete cone failure for cracked concrete	k cr,N	[-]	7,7								
Edge distance	C _{cr,N}	[mm]	1,5 h _{ef}								

Splitting failure									
Size			Ø8	Ø10	Ø12	Ø16	Ø20	Ø25	Ø32
Edge distance	C _{cr,sp}	[mm]	2 h _{ef}						
Spacing	Scr,sp	[mm]	2 C _{cr,sp}						

ChemSet [™] Reo502 [™] Plus, ChemSet [™] Epcon [™] C6 Plus, ChemSet [™] Epcon [™] G5 PRO	
Performances	Annex C 5
Diamond core drilling	
Characteristic resistance for tension loads - rebar	

Table C7: Design method EN 1992-4 Characteristic values of resistance to shear load of threaded rod

Steel failure without lever arm											
Size			M8	M10	M12	M16	M20	M24	M27	M30	
Steel grade 4.6	$V_{Rk,s}$	[kN]	7	12	17	31	49	71	92	112	
Partial safety factor	γMs	[-]				1,	67				
Steel grade 5.8	$V_{Rk,s}$	[kN]	9	15	21	39	61	88	115	140	
Partial safety factor	γMs	[-]	1,25								
Steel grade 8.8	$V_{Rk,s}$	[kN]	15	23	34	63	98	141	184	224	
Partial safety factor	γMs	[-]	1,25								
Steel grade 10.9	$V_{Rk,s}$	[kN]	18	29	42	79	123	177	230	281	
Partial safety factor	γMs	[-]	1,5								
Stainless steel grade A2-70, A4-70	$V_{Rk,s}$	[kN]	13	20	30	55	86	124	161	196	
Partial safety factor	γMs	[-]				1,	56				
Stainless steel grade A4-80	$V_{Rk,s}$	[kN]	15	23	34	63	98	141	184	224	
Partial safety factor	γMs	[-]				1,	33				
Stainless steel grade 1.4529	$V_{Rk,s}$	[kN]	13	20	30	55	86	124	161	196	
Partial safety factor	γMs	[-]				1,	25				
Stainless steel grade 1.4565	$V_{Rk,s}$	[kN]	13	20	30	55	86	124	161	196	
Partial safety factor	γMs	[-]				1,	56				
Characteristic resistance of group of fa	steners					·		·	·		
Ductility factor $k_7 = 1,0$ for steel with ru	pture elor	ngation <i>i</i>	$A_5 > 8\%$, 0	•		•				

Steel failure with lever arm										
Size			M8	M10	M12	M16	M20	M24	M27	M30
Steel grade 4.6	$M^{o}_{Rk,s}$	[N.m]	15	30	52	133	260	449	666	900
Partial safety factor	γMs	[-]				1,	67			
Steel grade 5.8	$M^{o}_{Rk,s}$	[N.m]	19	37	66	166	325	561	832	1125
Partial safety factor	γMs	[-]				1,	25			
Steel grade 8.8	$M^{o}_{Rk,s}$	[N.m]	30	60	105	266	519	898	1332	1799
Partial safety factor	γMs	[-]	1,25							
Steel grade 10.9	$M^{o}_{Rk,s}$	[N.m]	37	75	131	333	649	1123	1664	2249
Partial safety factor	γMs	[-]	1,50							
Stainless steel grade A2-70, A4-70	$M^{o}_{Rk,s}$	[N.m]	26	52	92	233	454	786	1165	1574
Partial safety factor	γMs	[-]				1,	56			
Stainless steel grade A4-80	$M^{o}_{Rk,s}$	[N.m]	30	60	105	266	519	898	1332	1799
Partial safety factor	γMs	[-]				1,	33			
Stainless steel grade 1.4529	$M^{o}_{Rk,s}$	[N.m]	26	52	92	233	454	786	1165	1574
Partial safety factor	γMs	[-]				1,	25			
Stainless steel grade 1.4565	M^o_Rk,s	[N.m]	26	52	92	233	454	786	1165	1574
Partial safety factor	γMs	[-]	1,56							
Concrete pryout failure										
Factor for resistance to pry-out failure	k ₈	[-]	2							•

Concrete edge failure										
Size			M8	M10	M12	M16	M20	M24	M27	M30
Outside diameter of fastener	d_{nom}	[mm]	8	10	12	16	20	24	27	30
Effective length of fastener	ℓf	[mm]	min (h _{ef} , 8 d _{nom})							

Annex C 6

Table C8: Design method EN 1992-4 Characteristic values of resistance to shear load of rebar

Steel failure without lever arm	Steel failure without lever arm												
Size		Ø8	Ø10	Ø12	Ø16	Ø20	Ø25	Ø32					
Rebar BSt 500 S	V _{Rk,s} [kN]	14	22	31	55	86	135	221					
Partial safety factor	γMs [-]				1,5								
Characteristic resistance of group of fasteners													
Ductility factor k_7 = 1,0 for steel with rupture elongation $A_5 > 8\%$													

Steel failure with lever arm									
Size			Ø8	Ø10	Ø12	Ø16	Ø20	Ø25	Ø32
Rebar BSt 500 S	$M^{o}_{Rk,s}$	[N.m]	33	65	112	265	518	1013	2122
Partial safety factor	γMs	[-]				1,5			
Concrete pryout failure									
Factor for resistance to pry-out failure	k 8	[-]				2			·

Concrete edge failure									
Size		Ø8	Ø10	Ø12	Ø16	Ø20	Ø25	Ø32	
Outside diameter of fastener	d _{nom} [mm]	8	10	12	16	20	25	32	
Effective length of fastener	ℓ₅ [mm]	n] min (h _{ef} , 8 d _{nom})							

ChemSet [™] Reo502 [™] Plus, ChemSet [™] Epcon [™] C6 Plus, ChemSet [™] Epcon [™] G5 PRO	
Performances	Annex C 7
Design according to EN 1992-4	
Characteristic resistance for shear loads - rebar	

Table C9: Displacement of threaded rod under tension and shear load Hammer drilling, dustless drilling

	114		GI IIIII I	g, aac		9			
Size		M8	M10	M12	M16	M20	M24	M27	M30
Tensio	n load								
Uncrac	ked concre	ete							
δ_{N0}	[mm/kN]	0,03	0,02	0,02	0,02	0,01	0,01	0,01	0,01
δ_{N^∞}	[mm/kN]	0,05	0,04	0,03	0,03	0,02	0,02	0,01	0,01
Cracke	d concrete	!							
δη0	[mm/kN]	0,05	0,04	0,03	0,03	0,02	0,02	0,02	0,02
δ _{N∞}	[mm/kN]	0,35	0,21	0,14	0,12	0,08	0,07	0,07	0,07
Shear I	load								
δ_{V0}	[mm/kN]	0,71	0,45	0,31	0,17	0,11	0,07	0,06	0,05
δ∨∞	[mm/kN]	1,06	0,67	0,46	0,25	0,16	0,11	0,08	0,07

Table C10: Displacement of threaded rod under tension and shear load Diamond core drilling

	Diamena coro ariining											
Size		M8	M10	M12	M16	M20	M24	M27	M30			
Tensio	Tension load											
Uncrad	cked concre	ete										
δ_{N0}	[mm/kN]	0,01	0,01	0,02	0,02	0,02	0,02	0,01	0,02			
δ _{N∞}	[mm/kN]	0,09	0,07	0,05	0,04	0,03	0,02	0,02	0,02			
Cracke	ed concrete	!										
δνο	[mm/kN]	0,03	0,04	0,04	0,04	0,03	0,03	0,04	0,04			
δ _{N∞}	[mm/kN]	0,33	0,28	0,20	0,14	0,12	0,09	0,09	0,08			
Shear	load											
δ_{V0}	[mm/kN]	0,71	0,45	0,31	0,17	0,11	0,07	0,06	0,05			
δ∨∞	[mm/kN]	1,06	0,67	0,46	0,25	0,16	0,11	0,08	0,07			

Table C11: Displacement of rebar under tension and shear load Hammer drilling, dustless drilling

				,,				
Size		Ø8	Ø10	Ø12	Ø16	Ø20	Ø25	Ø32
Tensio	n load							
Uncra	cked concre	ete						
δη0	[mm/kN]	0,04	0,03	0,02	0,01	0,01	0,01	0,01
δ _{N∞}	[mm/kN]	0,08	0,05	0,04	0,02	0,02	0,01	0,01
Crack	ed concrete	:						
δη0	[mm/kN]	0,05	0,04	0,03	0,03	0,02	0,02	0,02
$\delta_{N^{\infty}}$	[mm/kN]	0,35	0,21	0,17	0,11	0,08	0,07	0,06
Shear	load							
δ _{V0}	[mm/kN]	0,38	0,24	0,17	0,10	0,06	0,04	0,02
δ∨∞	[mm/kN]	0,56	0,36	0,25	0,14	0,09	0,06	0,04

Table C12: Displacement of rebar under tension and shear load Diamond drilling

		annone	a Grilling	9				
Size		Ø8	Ø10	Ø12	Ø16	Ø20	Ø25	Ø32
Tensio	n load							
Uncrad	cked concre	ete						
δνο	[mm/kN]	0,02	0,02	0,02	0,01	0,01	0,01	0,01
δ _{N∞}	[mm/kN]	0,09	0,06	0,04	0,03	0,02	0,01	0,01
Cracke	ed concrete	!						
δ_{N0}	[mm/kN]	0,04	0,03	0,03	0,02	0,02	0,01	0,01
$\delta_{N^{\infty}}$	[mm/kN]	0,39	0,26	0,18	0,10	0,07	0,04	0,03
Shear	load							
δνο	[mm/kN]	0,38	0,24	0,17	0,10	0,06	0,04	0,02
δ∨∞	[mm/kN]	0,56	0,36	0,25	0,14	0,09	0,06	0,04

ChemSet [™] Reo502 [™] Plus, ChemSet [™] Epcon [™] C6 Plus, ChemSet [™] Epcon [™] G5 PRO	
Performances Displacements	Annex C 8

Size			M8	M10	M12	M16	M20	M24	M27	M30
Tension load										
Steel failure										
Characteristic resistance grade 4.6	N _{Rk,s,eq,C1}	[kN]	15	23	34	63	98	141	184	224
Partial safety factor	γMs	[-]	10		04	2,0		171	104	
Characteristic resistance grade 5.8	N _{Rk,s,eq,C1}	[kN]	18	29	42	79	123	177	230	281
Partial safety factor	γMs	[-]	10		72		50	111	200	201
Characteristic resistance grade 8.8	N _{Rk,s,eq,C1}	[kN]	29	46	67	126	196	282	367	449
Partial safety factor	γMs	[-]		1 40	01		50	202	001	110
Characteristic resistance grade 10.9	N _{Rk,s,eq,C1}	[kN]	37	58	84	157	245	353	459	561
Partial safety factor	γMs	[-]	01	50	04		33	000	700	301
Characteristic resistance A2-70 , A4-70	N _{Rk,s,eq,C1}	[kN]	26	41	59	110	172	247	321	393
Partial safety factor	γMs	[-]	20	71	00		87	271	021	000
Characteristic resistance A4-80	N _{Rk,s,eq,C1}	[kN]	29	46	67	126	196	282	367	449
Partial safety factor	γMs	[-]	23	1 40	01	1,0	l	202	307	143
Characteristic resistance 1.4529	N _{Rk,s,eq,C1}	[kN]	26	41	59	110	172	247	321	393
Partial safety factor	γMs	[-]	20	71	00		50	241	JZ 1	000
Characteristic resistance 1.4565		[kN]	26	41	59	110	172	247	321	393
Partial safety factor	N _{Rk,s,eq,C1}	[NIN] [_]	20	41	39	1,		241	JZ 1	393
Combined pullout and concrete cone fa	γMs	noroto C2	0/25 f	or 2 W/	rkina			are an	d 100	voor
Combined pullout and concrete cone is Characteristic bond resistance	allule III CO	iiciele Cz	.0/23 10	or a we	Jikiliy	ille oi	ou ye	ais aii	u 100	years
Dry and wet concrete, Flooded hole	τ _{Rk,p,eq,C1}	[NI/mm2]	9,4	8.5	10,0	0.7	7,4	7 7	5,7	4.0
Installation safety factor for Dry and V					10,0	8,7	7,4	7,7	5,7	4,9
			iea no I	ne		1	^			
Dry, wet concrete	γinst	[-]					,0			
Hammer drilling – Flooded hole Dustless drilling – Flooded hole	γinst	[-] [-]					,0 ,2			
Dustiess drilling – Flooded note	γinst	[-]				- 1,	,∠			
Shear load										
Steel failure without lever arm										
Characteristic resistance grade 4.6	$V_{Rk,s,eq,C1}$	[kN]	5	9	13	20	32	28	37	45
Partial safety factor	γMs	[-]				1,	67			
Characteristic resistance grade 5.8	$V_{Rk,s,eq,C1}$	[kN]	7	11	16	26	40	35	46	56
Partial safety factor	γMs	[-]				1,	25			•
Characteristic resistance grade 8.8	V _{Rk,s,eq,C1}	[kN]	11	17	25	41	64	56	73	90
Partial safety factor	γMs	[-]				1,:	25			
Characteristic resistance grade 10.9	$V_{Rk,s,eq,C1}$	[kN]	14	22	32	51	80	71	92	112
Partial safety factor	γMs	[-]				1,:	50			1
Characteristic resistance A2-70 , A4-70	V _{Rk,s,eq,C1}	[kN]	10	15	22	36	56	49	64	79
Partial safety factor	γMs	[-]					56			
Characteristic resistance A4-80	V _{Rk,s,eq,C1}	[kN]	11	17	25	41	64	56	73	90
Partial safety factor	γMs	[-]					33		. •	
Characteristic resistance 1.4529	V _{Rk,s,eq,C1}	[kN]	10	15	22	36	56	49	64	79
Partial safety factor	γMs	[-]	'				25	10	01	,,,
Characteristic resistance 1.4565	V _{Rk,s,eq,C1}	[kN]	10	15	22	36	56	49	64	79
Partial safety factor	γ κκ,s,eq,c τ γMs	[-]	10	10			56	10	0-1	10
Characteristic shear load resistance V _{Rk}		able C7 s	hall h	e multi	nliad h			educti	on fac	tor fo
	galvanized					y lollo	wing	Caacti	on iac	101 10
Reduction factor for hot-dip galvanized rods		[-]		0,47		0.54	0.54	0.88	0.88	0.88
Factor for annular gap	αgap	[-]	-,	-,	-,	0,01	_	,55	,50	, 5,50
	<u> </u>	LJ	<u> </u>							
The anchor shall be used with minimu	ım rupture	elongati	on aft	er frac	ture A	$\lambda_5 \ge 9^{\circ}$	% .			
hemSet™ Reo502™ Plus, ChemSe	-									
chemSet™ Epcon™ G5 PRO	. Lpco	50 F	ıus,							
						\dashv				
Performances							F	Anne	x C 9	
lammer drilling, Dustless drilling										
Seismic performance category C1 of t										

Table C14: Seismic performance category C1 of rebar - Hammer drilling, Dustless drilling

		Ø10	Ø12	Ø16	Ø20	Ø25	Ø32
N _{Rk,s,eq,C1}	[kN]	43	62	111	173	270	442
γMs	[-]			1,	,4		
ilure in co	ncrete C2	0/25 for	a workir	ng life of	50 year	s and 10	0 years
							•
τ _{Rk,p,eq,C1}	[N/mm ²]	9,4	9,8	9,5	8,8	8,0	5,3
Vet concre	te, Flood	ed hole					•
γinst	[-]			1,	,0		
γinst	[-]			1,	,2		
γinst	[-]			1,	,2		
	TRk,p,eq,C1 Vet concre γinst γinst	γ _{Ms} [-] ailure in concrete C2 τ _{Rk,p,eq,C1} [N/mm ²] Vet concrete, Flood γ _{inst} [-] γ _{inst} [-]	γMs [-] ailure in concrete C20/25 for τ _{Rk,p,eq,C1} [N/mm²] 9,4 Vet concrete, Flooded hole γ _{inst} [-] γ _{inst} [-]	γ _{Ms} [-] ailure in concrete C20/25 for a workin τ _{Rk,p,eq,C1} [N/mm ²] 9,4 9,8 Vet concrete, Flooded hole γ _{inst} [-] γ _{inst} [-]	γ_{Ms} [-] 1 Ailure in concrete C20/25 for a working life of $\tau_{Rk,p,eq,C1}$ [N/mm²] 9,4 9,8 9,5 Net concrete, Flooded hole γ_{inst} [-] 1 γ_{inst} [-] 1	γ _{Ms} [-] 1,4 Ailure in concrete C20/25 for a working life of 50 years TRk,p,eq,C1 [N/mm²] 9,4 9,8 9,5 8,8 Vet concrete, Flooded hole 1,0 1,2	γ _{Ms} [-] 1,4 Ailure in concrete C20/25 for a working life of 50 years and 10 TRk,p,eq,C1 [N/mm²] 9,4 9,8 9,5 8,8 8,0 Vet concrete, Flooded hole γ _{inst} [-] 1,0 γ _{inst} [-] 1,2

Shear load								
Steel failure without lever arm								
Rebar BSt 500 S	$V_{Rk,s,eq,C1}$	[kN]	16	23	41	69	67	111
Partial safety factor	γMs	[-]			1	,5		
Factor for annular gap	$lpha_{\sf gap}$	[-]			0	,5		

ChemSet [™] Reo502 [™] Plus, ChemSet [™] Epcon [™] C6 Plus, ChemSet [™] Epcon [™] G5 PRO	
Performances	Annex C 10
Hammer drilling, Dustless drilling	
Seismic performance category C1 of rebar	

Table C15: Seismic performance category C2 of threaded rod - Hammer drilling, Dustless drilling

		M12	M16	M20
		17112	14110	WZU
$N_{Rk,s,eq,C2}$	[kN]	34	63	98
γMs	[-]		2,00	
N _{Rk,s,eq,C2}	[kN]	42	79	123
γMs	[-]		1,50	
N _{Rk,s,eq,C2}	[kN]	67	126	196
γMs	[-]		1,50	
$N_{Rk,s,eq,C2}$	[kN]	84	157	245
γMs	[-]			
N _{Rk,s,eq,C2}	[kN]	59	110	172
γMs	[-]		1,87	
N _{Rk,s,eq,C2}	[kN]	67	126	196
γMs	[-]		1,60	
$N_{Rk,s,eq,C2}$	[kN]	59	110	172
γMs	[-]		1,50	
N _{Rk,s,eq,C2}	[kN]	59	110	172
γMs	[-]		1,87	
ure in concre	ete C20/25 f	or a working life	e of 50 years and	100 years
τ _{Rk,p,eq,C2}	[N/mm ²]	3,5	4,0	4,5
γinst	[-]		1,0	
γinst	[-]		1,2	
V _{Rk.s.ea.C2}	[kN]	13	18	28
γMs	[-]		1,67	
V _{Rk,s,eq,C2}	[kN]	16	22	35
	[-]		1,25	
	[kN]	25	36	56
γMs	[-]		1,25	
	[kN]	32	45	70
γMs	[-]		1,50	
	[kN]	22	31	49
γMs	[-]		1,56	
V _{Rk,s,eq,C2}	[kN]	25	36	56
γMs	[-]		1,33	
		22	31	49
γMs	[-]		1,25	
		22		49
	УМs	γMs [-] NRk,s,eq,C2 [kN] γMs [-] ure in concrete C20/25 1 τRk,p,eq,C2 [N/mm²] concrete, Flooded hole γinst [-] γMs [-] VRk,s,eq,C2 [kN] γM	γMs [-] NRk,s,eq,C2 [kN] 42 γMs [-] NRk,s,eq,C2 [kN] 67 γMs [-] NRk,s,eq,C2 [kN] 84 γMs [-] NRk,s,eq,C2 [kN] 59 γMs [-] NRk,s,eq,C2 [kN] 59 γMs [-] NRk,s,eq,C2 [kN] 59 γMs [-] NRk,s,eq,C2 [kN] 39 γMs [-] γMs [-] γMs [-] γms [-] VRk,s,eq,C2 [kN] 13 γMs [-] γms [-] VRk,s,eq,C2 [kN] 16 γMs [-] γms [-] VRk,s,eq,C2 [kN] 32 γMs [-] γms [-] VRk,s,eq,C2 [kN] 25 γMs [-] γms [-] VRk,s,eq,C2 [kN] 25 γMs	γ/Ms [-] 2,00 NRk,s,eq,C2 [kN] 42 79 γMs [-] 1,50 NRk,s,eq,C2 [kN] 67 126 γMs [-] 1,50 NRk,s,eq,C2 [kN] 84 157 γMs [-] 1,33 NRk,s,eq,C2 [kN] 59 110 γMs [-] 1,87 NRk,s,eq,C2 [kN] 59 110 γMs [-] 1,50 NRk,s,eq,C2 [kN] 59 110 γMs [-] 1,50 NRk,s,eq,C2 [kN] 59 110 γMs [-] 1,67 Vrk,s,eq,C2 [kN] 59 110 γMs [-] 1,0 γms [-] 1,0 γmst [-] 1,0 γmst [-] 1,2 Vrk,s,eq,C2 [kN] 1 1,25 Vrk,s,eq,C2

Partial safety factor γ_{Ms} [-] 1,56

Characteristic shear load resistance V_{Rk,s,eq} in the Table C9 shall be multiplied by following reduction factor for **hot-dip αalvanized** commercial standard rods

galv	anized co	mmercial s	standard rods	· ·	•
Reduction factor for hot-dip galvanized rods	αv,h-dg,c2	[-]	0,46	0,61	0,61
Factor for annular gap	αgap	[-]		0.5	

Table C16: Displacement under tensile and shear load - seismic category C2 of threaded rod

1	Size		M12	M16	M20
I	$\delta_{\text{N,eq(DLS)}}$	[mm]	0,20	0,40	0,77
I	$\delta_{\text{N,eq(ULS)}}$	[mm]	0,76	0,74	1,68
I	δ V,eq(DLS)	[mm]	5,29	4,12	4,94
	δ V,eq(ULS)	[mm]	10,20	9,05	10,99

The anchor shall be used with minimum rupture elongation after fracture $A_5 \ge 9\%$

The anchor shall be used with minimum rupture elongation after fracture A ₅	≥ 9%.
ChemSet [™] Reo502 [™] Plus, ChemSet [™] Epcon [™] C6 Plus, ChemSet [™] Epcon [™] G5 PRO	
Performances	Annex C 11
Hammer drilling, Dustless drilling	
Seismic performance category C2 of threaded rod	