

for Construction Prague Prosecká 811/76a 190 00 Prague Czech Republic eota@tzus.cz

European Technical Assessment

ETA 20/0752 of 08/07/2024

Technical Assessment Body issuing the ETA: Technical and Test Institute for Construction Prague				
Trade name of the construction product	ChemSet [™] Reo502 [™] Plus ChemSet [™] Epcon [™] C6 Plus ChemSet [™] Epcon [™] G5 PRO			
Product family to which the construction product belongs	Product area code: 33 Post installed rebar connections with ChemSet [™] Reo502 [™] Plus, ChemSet [™] Epcon [™] C6 Plus, ChemSet [™] Epcon [™] G5 PRO injection mortar			
Manufacturer	Ramsetreid A Division of ITW Australia Pty Ltd 1 Ramset Drive, Chirnside Park. Vic 3116 Australia			
Manufacturing plant	Ramsetreid Plant 3			
This European Technical Assessment contains	19 pages including 16 Annexes which form an integral part of this assessment.			
This European Technical Assessment is issued in accordance with regulation (EU) No 305/2011, on the basis of	EAD 330087-01-0601 Systems for post- installed rebar connections with mortar			
This version replaces	ETA 20/0752 issued on 02/08/2021			

Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and should be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full (excepted the confidential Annex(es) referred to above). However, partial reproduction may be made, with the written consent of the issuing Technical Assessment Body - Technical and Test Institute for Construction Prague. Any partial reproduction has to be identified as such.

1. Technical description of the product

The ChemSet[™] Reo502[™] Plus, ChemSet[™] Epcon[™] C6 Plus, ChemSet[™] Epcon[™] G5 PRO injection system is used for the connection, by anchoring or overlap joint, of reinforcing bars (rebars) in existing structures made of normal weight concrete. The design of the post-installed rebar connections is done in accordance with the regulations for reinforced concrete constructions.

Reinforcing bars made of steel with a diameter d from 8 to 40 mm and ChemSet[™] Reo502[™] Plus, ChemSet[™] Epcon[™] C6 Plus, ChemSet[™] Epcon[™] G5 PRO chemical mortar are used for rebar connections. The steel element is placed into a drilled hole filled with injection mortar and is anchored via the bond between embedded element, injection mortar and concrete.

The illustration and the description of the product are given in Annex A.

2. Specification of the intended use in accordance with the applicable EAD

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The provisions made in this European Technical Assessment are based on an assumed working life of the anchor of 50 years and 100 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the products in relation to the expected economically reasonable working life of the works.

3. Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance		
Characteristic resistance under static and quasi-static loading			
Bond strength of post-installed rebar	See Annex C 1, C 2		
Reduction factor	See Annex C 1, C 2		
Amplification factor for minimum anchorage length	See Annex C 1, C 2		
Characteristic resistance under seismic loading			
Bond strength under seismic loading	See Annex C 3		
Seismic bond efficiency factor			
Minimum concrete cover under seismic loading	See Annex B 3		

3.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance
Reaction to fire	Class (A1) according to EN 13501-1
Resistance to fire	See Annex C 4

3.3 General aspects relating to fitness for use

Durability and serviceability are only ensured if the specifications of intended use according to Annex B 1 are kept.

4. Assessment and verification of constancy of performance (AVCP) system applied with reference to its legal base

According to the Decision 96/582/EC of the European Commission¹ the system of assessment verification of constancy of performance (see Annex V to Regulation (EU) No 305/2011) given in the following table apply.

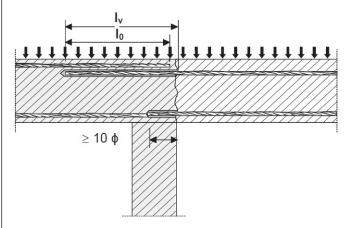
Product	Intended use	Level or class	System
Metal anchors for use in concrete	For fixing and/or supporting concrete structural elements or heavy units such as cladding and suspended ceilings	-	1

¹ Official Journal of the European Communities L 254 of 08.10.1996

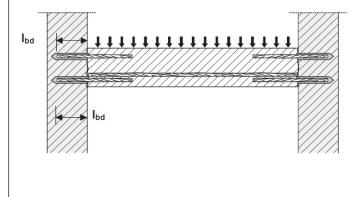
ETA 20/0752 of 08/07/2024 - Page 2 of 19 and replacing ETA 20/0752 issued on 02/08/2021

5. Technical details necessary for the implementation of the AVCP system, as provided in the applicable EAD

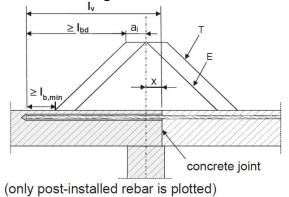
The factory production control shall be in accordance with the control plan which is a part of the technical documentation of this European Technical Assessment. The control plan is laid down in the context of the factory production control system operated by the manufacturer and deposited at Technical and Test Institute for Construction Prague.² The results of factory production control shall be recorded and evaluated in accordance with the provisions of the control plan.

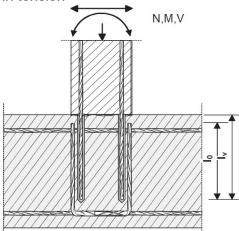

Issued in Prague on 08.07.2024

By Ing. Jiří Studnička, Ph.D. Head of the Technical Assessment Body



² The control plan is a confidential part of the documentation of the European Technical Assessment, but not published together with the ETA and only handed over to the approved body involved in the procedure of AVCP.


Figure A1: Overlap joint for rebar connections of slabs and beams


Figure A3: End anchoring of slabs or beams, designed as simply supported

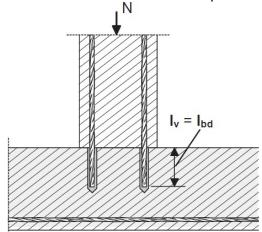

Figure A5: Anchoring of reinforcement to cover the line of acting tensile force

Figure A2: Overlap joint at a foundation of a column or wall where the rebars are stressed in tension

Figure A4: Rebar connection for components stressed primarily in compression. The rebars are stressed in compression.

Key to Figure A5

- T acting tensile force
- E envelope of $M_{ed}/z + N_{ed}$ (see EN 1992-1-1, Figure 9.2)
- x distance between the theoretical point of support and concrete join

Note to Figure A1 to A5:

In the Figures no transverse reinforcement is plotted, the transverse reinforcement as required by EN 1992-1-1 shall be present.

The shear transfer between old and new concrete shall be designed according to EN 1992-1-1.

ChemSet [™] Reo502 [™] Plus, ChemSet [™] Epcon [™] C6 Plus, ChemSet [™] Epcon [™] G5 PRO for rebar connection	
Product description Installed condition and examples of use for rebars	Annex A 1

Mortar cartridges	6					
Coaxial cartridge Chemset [™] Reo502 [™] ChemSet [™] Epcon [™] (ChemSet [™] Epcon [™] (C6 Plus	600 ml		-		
Side by side cartridg Chemset [™] Reo502 [™] ChemSet [™] Epcon [™] (ChemSet [™] Epcon [™] (Plus, C6 Plus	450 ml				
Marking of the mortan Identifying mark of the processing time			, Charge code	number, Storaç	ge life, Curing a	nd
Mixing nozzle						
Q mixing nozzle	-	-	-			
QH mixing nozzle						
EF mixing nozzle				(0	

ChemSet [™] Reo502 [™] Plus, ChemSet [™] Epcon [™] C6 Plus,
ChemSet [™] Epcon [™] G5 PRO for rebar connection

Product description Injection system Annex A 2

Rebar Ø8, Ø10, Ø12, Ø14, Ø16, Ø18, Ø20, Ø22, Ø24, Ø25, Ø26, Ø28, Ø32, Ø40

Figure A6: Reinforcing bar

Minimum value of related rib area $f_{R,min}$ according to EN 1992-1-1:2004.

 The maximum outer rebar diameter over the ribs shall be: Nominal diameter of the rib d + 2 • h (h≤0,07 • d) (d: nominal diameter of the bar; h: rib height of the bar)

 Table A1: Materials

Product form Bars and de-coiled		coiled rods		
Class		В	С	
Characteristic yield strength	n f _{yk} or f _{0,2k} (MPa)	400 to 600		
Minimum value of $k = (f_t / f_y)$	Minimum value of $k = (f_t / f_y)_k$			
Characteristic strain at max	eristic strain at maximum force ε_{uk} (%)		≥ 7,5	
Bendability		Bend / Rebend test		
Maximum deviation from	Nominal bar size (mm)			
nominal mass (individual ≤ 8		± 6,0		
bar) (%)	> 8 ± 4,5		,5	
Bond:	Nominal bar size (mm)			
Minimum relative rib 8 to 12		0,040		
area, f _{R,min} > 12		0,056		

ChemSet [™] Reo502 [™] Plus,	ChemSet [™] E	Epcon™ C6	Plus,
ChemSet [™] Epcon [™] G5 PR	O for rebar co	onnection	

Product description Rebar and materials Annex A 3

Specifications of intended use

Anchorages subject to:

- Static and quasi-static loading: rebar Ø 8 to Ø 40
- Seismic loading: rebar Ø 12 to Ø 40
- Fire exposure

Base materials

- Reinforced or unreinforced normal weight concrete according to EN 206:2013
- Strength classes C12/15 to C50/60 according to EN 206:2013 for static and quasi-static loading
- Strength classes C16/20 to C50/60 according to EN 206:2013 for seismic loading
- Maximum chloride concrete of 0,40% (CL 0.40) related to the cement content according to EN 206:2013.
- Non-carbonated concrete.

Note: In case of a carbonated surface of the existing concrete structure the carbonated layer shall be removed in the area of the post installed rebar connection (with a diameter $d_s + 60$ mm) prior to the installation of the new rebar. The depth of concrete to be removed shall correspond to at least minimum concrete cover in accordance with EN 1992-1-1:2004.

The foregoing may be neglected if building components are new and not carbonated.

Temperature range:

• -40°C to +80°C (max. short. term temperature +80°C and max. long term temperature +50°C)

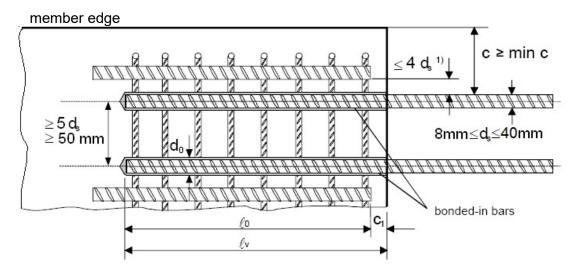
Use conditions (Environmental conditions)

• The rebars may be used in dry or wet concrete.

Design:

- The anchorages are designed under the responsibility of an engineer experienced in anchorages and concrete work.
- Verifiable calculation notes and drawings are prepared taking account of the forces to be transmitted.
- Design for static and quasi-static action according to EN 1992-1-1 and for seismic action according to EN 1998-1.
- Design for resistance to fire according to EN 1992-1-2.
- The position of the reinforcement in the existing structure shall be determined on the basis of the construction documentation and taken into account when designing.

Installation:


- Dry or wet concrete.
- It must not be installed in flooded holes.
- Hole drilling by hammer drill, dustless drill, compressed air drill mode or diamond core drilling.
- The installation of post-installed rebars shall be done only by suitable trained installer and under supervision on site. The conditions under which an installer may be considered as suitable trained and the conditions for supervision on site are up to the Member States in which the installation is done.
- Check the position of the existing rebars (if the position is not known, it shall be determined using a rebar detector suitable for this purpose).

ChemSet [™] Reo502 [™] Plus, ChemSet [™] Epcon [™] C6 Plus,	
ChemSet [™] Epcon [™] G5 PRO for rebar connection	

Annex B 1

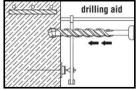
Intended use Specifications Figure B1: General design rules of construction for bonded-in rebars

- Only tension forces in the axis of the rebar may be transmitted
- The transfer of shear forces between new concrete and existing structure shall be designed additionally according to EN 1992-1-1.
- The joints for concreting must be roughened to at least such an extent that aggregate protrude.

- $^{1)}$ If the clear distance between lapped bars exceeds $4d_{s}$ then the lap length shall be increased by the difference between the clear bar distance and $4d_{s}$
- c concrete cover of bonded-in bar
- c1 concrete cover at end-face of bonded-in bar
- min c minimum concrete cover acc. Table B1 of this assessment
- d_s diameter of bonded-in bar
- ℓ_0 lap length acc. to EN 1992-1-1:2004
- ℓ_v effective embedment depth $\geq \ell_0 + c_1$
- d₀ nominal drill bit diameter, see Table B2

ChemSet [™] Reo502 [™] Plus, ChemSet [™] Epcon [™] C6 Plus
ChemSet [™] Epcon [™] G5 PRO for rebar connection

Annex B 2


General design rules of construction

Intended use

Table B1: Minimum concrete cover c _{min} depending on drilling method				
Drilling method	Bar diameter ø	Without drilling aid c _{min}	With drilling aid c _{min}	
Hammer drilling or	< 25 mm	30 mm + 0,06 ℓ _v ≥ 2 φ	30 mm + 0,02 ℓ _v ≥ 2 φ	
dustless drilling or	≥ 25 mm	40 mm + 0,06 ℓ _v ≥ 2 φ	40 mm + 0,02 ℓ _v ≥ 2 φ	
diamond drilling		-		
Comprosed oir drilling	< 25 mm	50 mm + 0,08 ℓ _v	50 mm + 0,02 ℓ _v	
Compressed air drilling	≥ 25 mm	60 mm + 0,08 ℓ _v ≥ 2 φ	60 mm + 0,02 ℓ _v ≥ 2 φ	

The minimum concrete cover according to EN 1992-1-1 shall be observed. For rebar under seismic loading, apply the same minimum concrete value following that of table B1 and $c_{min,seis} = 2 \phi$.

Figure B2: Example of drilling aid

Minimum anchorage length $\ell_{bd,PIR}$ and minimum anchorage lap length $\ell_{0,PIR}$

Minimum anchorage length

 $\ell_{b,PIR} = \alpha_{lb} \bullet \ell_{b,min}$

 $\alpha_{lb} = \alpha_{lb,100y}$ = amplification factor for minimum anchorage length

- (see Annex C 1, Table C2 for hammer or dustless drilling method)
- (see Annex C 2, Table C4 for diamond core drilling method)
- = minimum anchorage length of cast-in rebar according to EN 1992-1-1, eq. 8.6

Minimum lap length

 $\ell_{0,\text{PIR}} = \alpha_{\text{lb}} \bullet \ell_{0,\text{min}}$

ℓb,min

ℓ_{b,min}

- $\alpha_{lb} = \alpha_{lb,100y}$ = amplification factor for minimum anchorage length
 - (see Annex C 1, Table C2 for hammer or dustless drilling method)
 - (see Annex C 2, Table C4 for diamond core drilling method)
 - = minimum lap length of cast-in rebar according to EN 1992-1-1, eq. 8.11

Table B2: Drilling diameter and maximum anchorage depth

	Nominal drilling	Max permissible
Rebar diameter	diameter	embedment depth
d _{nom} ¹⁾	d _{cut}	ℓ _v .
[mm]	[mm]	[mm]
8	12	400
10	14	500
12	16	600
14	18	700
16	20	800
18	22	900
20	25	1000
22	28	1000
24	32	1000
25	32	1000
26	32	1000
28	35	1000
32	40	1000
40	55	1000

¹⁾ The maximum outer rebar diameter over the ribs shall be: nominal diameter of the bar d_{nom} + 0,20 d_{nom}

ChemSet[™] Reo502[™] Plus, ChemSet[™] Epcon[™] C6 Plus,

ChemSet[™] Epcon[™] G5 PRO for rebar connection Intended use

Minimum concrete cover Minimum anchorage length Maximum embedment length Annex B 3

Base Mater	ial		Ca	rtridge	;		ΤG	Sel	TIO	oad								
Temperature	°C	°C Temperature °C					(mir	าร)	(h	rs)								
+5°C							30	0	0	24								
+5°C to +10	°C	C Minimum +10°C					15	0		.4								
+10°C to +15	°C						4()	1	8								
+15°C to +20	°C		+15°C	C to +2	0°C		25			2								
+20°C to +25	°C		+20°C	C to +2	5°C		18	3		8								
+25°C to +30			+25°C	C to +3	0°C		12			6								
+30°C to +35				C to +3			8			4								
	°C		+35°C	C to +4	O°C		6			2								
+35°C to +40	0		00 0		<u> </u>		Ensure cartridge is > 10°C											
+35°C to +40		Ensu				• 10°	-											
Table B4: Brus			ire cai	rtridge	e is >		С				Ø25	Ø26	Ø128	Ø32	Ø40			
Table B4: Brus Sizes	sh [mm]	Ø8 12	Ø10	Ø12	Ø14	Ø16	С	Ø20 25		Ø24 32	Ø25 32	Ø26 32	Ø28 35	<u>Ø32</u> 40	Ø40 55			
Table B4: Brus Sizes Drill hole diameter d₀	sh [mm]	Ø8	Ø10 14 S14HF	Ø12	Ø14	Ø16 20	C Ø18 22	Ø20 25	Ø22	Ø24 32	Ø25 32	32	35		55			
Table B4: Brus Sizes Drill hole diameter d₀ Steel brush diameter	sh [mm] [mm]	Ø8 12 S12HF	Ø10 14 S14HF	Ø12	Ø14	Ø16 20	C Ø18 22	Ø20 25	Ø22 28 S31HF	Ø24 32	32	32	35	40	55			
Table B4: Brus Sizes Drill hole diameter d₀ Steel brush diameter Brushes head length	sh [mm] [mm] [mm]	Ø8 12 S12HF S13HF	Ø10 14 S14HF S15HF	Ø12 16 S18HF	Ø14 18 S22	Ø16 20 2HF	Ø18 22 S24HF	Ø20 25 S27HF 75	Ø22 28 S31HF	Ø24 32	32 635HF	32	35 S38HF	40 S43HF	55 S58HF			
Table B4: Brus Sizes Drill hole diameter d₀ Steel brush diameter Brushes head length If required use a	sh [mm] [mm] [mm] additid	Ø8 12 S12HF S13HF onal ac	Ø10 14 S14HF S15HF	Ø12 16 S18HF ries ar	Ø14 18 S22 nd ex	Ø16 20 2HF	Ø18 22 S24HF	Ø20 25 S27HF 75	Ø22 28 S31HF	Ø24 32 s	32 S35HF rush t	32	35 S38HF	40 S43HF	55 S58HF			
Table B4: Brus Sizes Drill hole diameter d₀ Steel brush diameter Brushes head length	sh [mm] [mm] [mm] additio	Ø8 12 S12HF S13HF	Ø10 14 S14HF S15HF ccesso ension	Ø12 16 S18HF ries ar configu	Ø14 18 S22 nd ex uratio	Ø16 20 2HF atens	Ø18 22 S24HF	Ø20 25 S27HF 75	Ø22 28 S31HF	024 32 (nd br	32 635HF	32 : :o rea	35 S38HF	40 S43HF	55 S58HF			
Table B4: Brus Sizes Drill hole diameter d₀ Steel brush diameter Brushes head length If required use a Max. hole depth	sh [mm] [mm] [mm] additio Brus Brus	Ø8 12 S12HF S13HF onal ac	Ø10 14 S14HF S15HF ccesso ension d unit +	vitridge Ø12 16 S18HF ries ar configu handle	Ø14 18 S22 nd ex uratio e unit	Ø16 20 2HF atens	Ø18 22 S24HF	Ø20 25 S27HF 75 r air no	Ø22 28 S31HF 5 ozzle al	024 32 nd br	32 S35HF rush t rart	32 - to rea	35 S38HF	40 S43HF	55 S58HF			

Part	(b)
------	-----

-		And a local diversion of the local diversion
-	7/10/10/11/10/10/10/10/10/10/10/10/10/10/	
	and the second states of the states of the states and the states and the states and the states of th	the second se

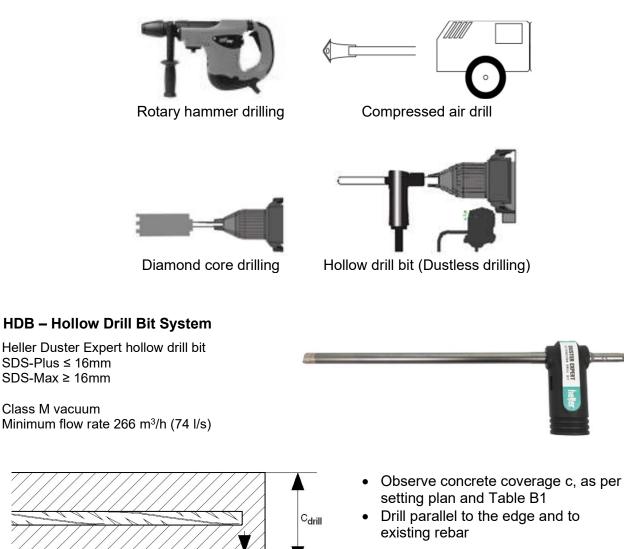
Part (c)

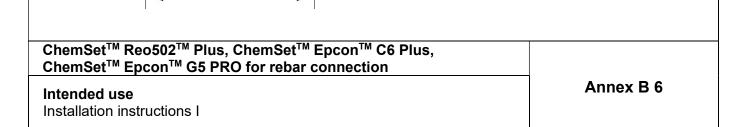
Table B5: Extension hose for deep holes

Sizes		Ø8	Ø10	Ø12	Ø14	Ø16	Ø18	Ø20	Ø22	Ø24	Ø25	Ø26	Ø28	Ø32	Ø40
Hole diameter	[mm]	12	14	16	18	20	22	25	28	32	32	32	35	40	55
Extension hose	[mm]	Q,	9						1	4					
Resin stopper	[mm]	-	-	-	-	1	8	2	2		3	0		36	50
ChemSet [™] Reo502 [™] Plus, ChemSet [™] Epcon [™] C6 Plus, ChemSet [™] Epcon [™] G5 PRO for rebar connection															
	on [™] G5	<u>PRO</u>	tor re	ebar o	conne	ection									
	on™ G5	PRO	tor re	ebar d	conne	ection						Ar	nex	В4	
ChemSet [™] Epco			for re	ebar d	conne	ection						Ar	nex	B 4	

Table B6: Applicator	gun			
A	K	A1	Production of the second	
B				
Applicator gun Cartridge	A (A1) Coaxial 600 ml			B Side by side 450 ml
ChemSet [™] Reo502 [™] ChemSet [™] Epcon [™] (Plus, ChemSet™ Epcon G5 PRO for rebar connec	™ C6 Plus, tion		
Intended use Applicator gun				Annex B 5

٦


Г

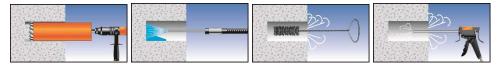

Drilling the hole

Drill hole to the require embedment depth using one of the following:

- Hammer drill (HD) with a carbide drill bit set in rotation hammer mode
- Hammer drill with the specified hollow drill bit (HDB) set in hammer mode
- Core drill machine with a diamond core drill bit (DD)
- Compressed air drilling (CA)

Before drilling remove carbonized concrete. In case of aborted drill hole the drill hole shall be filled with mortar.

Cleaning the hole


The borehole must be free of dust, debris, water, ice, oil, grease and other contaminants prior to mortar injection.

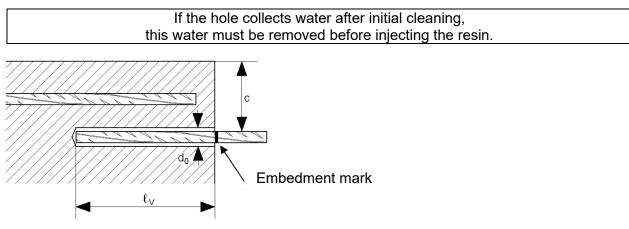
Hammer drilling (HD) or Compressed air drilling (CA)

- 1. After drilling the hole, Blow 2 times from the back of the hole with oil-free compressed air (min. 6 bar) until return air stream is free of noticed dust. Repeat this action twice.
- 2. Selecting the appropriate brush and extension if necessary, insert the brush to the bottom of the hole and firmly withdraw with a twisting motion. There should be positive interaction between the bristles of the brush and the side of the hole otherwise a new brush should be chosen. Repeat this action twice.
- 3. Repeat operation 1 and 2.
- 4. Perform the blowing operation 1 time again with compressed air until return air stream is free of noticeable dust.

Diamond core drilling (DD)

- 1. After drilling the hole, starting from the back of the hole, flush with pressurised water a minimum of two times and until there is only clean water.
- 2. Selecting the appropriate brush and extension if necessary, insert the brush to the bottom of the hole and firmly withdraw with a twisting motion. There should be positive interaction between the bristles of the brush and the side of the hole otherwise a new brush should be chosen. Perform the brushing operation twice.
- 3. Repeat operation 1 and 2.
- 4. Blow 2 times from the back of the hole with oil-free compressed air (min. 6 bar) until return air stream is free of noticed dust. Repeat this action twice.

Hammer drilling with hollow drill bit (HDB)


- 1. Use the specified hollow drill bit and follow the manufacturers instruction. Ensure the vacuum system is on.
- 2. After drilling the hole, perform a visual inspection to ensure the system has worked correctly and that no debris remains.

No further cleaning process is necessary.

ChemSet[™] Reo502[™] Plus, ChemSet[™] Epcon[™] C6 Plus, ChemSet[™] Epcon[™] G5 PRO for rebar connection

Annex B 7

Intended use Installation instructions II Mortar injection

Before use, make sure the rebar is dry and free of oil or other residue.

Mark embedment depth on the rebar (e.g. with tape) ℓ_v

Insert rebar in borehole, to verify hole and setting depth ℓ_{v}

- Check expiration date: See imprint on cartridge. Do not use an expired product
- Cartridge temperature: Must be between +10°C and +40°C when in use
- Base material temperature at time of installation: Must be between +5°C and +40°C
- Instructions for transport and storage: Keep in a cool, dry and dark place at +5°C to +20°C achieve maximum shelf life

Select the appropriate static mixer nozzle for the installation, open the cartridge and screw onto the mouth of the cartridge. Insert the cartridge into the correct applicator gun.

Extrude the first part of the cartridge to waste until an even colour has been achieved without streaking in the resin

If necessary, cut the extension tube to the depth of the hole and push onto the end of the mixer nozzle, and (for rebars 16 mm dia. or more) fit the correct resin stopper to the other end. Attach extension tubing and resin stopper.

Insert the mixer nozzle (resin stopper / extension tube if applicable) to the bottom of the hole. Begin to extrude the resin and slowly withdraw the mixer nozzle from the hole ensuring that there are no air voids as the mixer nozzle is withdrawn. Fill the hole to approximately ½ to ¾ full and remove the mixer nozzle completely.

ChemSet[™] Reo502[™] Plus, ChemSet[™] Epcon[™] C6 Plus, ChemSet[™] Epcon[™] G5 PRO for rebar connection

Intended use Installation instructions III Annex B 8

Inserting the rebarMortar level markMortar level markMark the required mortar level ℓ_m and
embedment depth ℓ_v with tape or marker on
the injection extension.Quick estimation: $\ell_m = 1/2 \cdot \ell_v$ Continue injection until the mortar level
mark ℓ_m becomes visible.Image: Second Seco

Any excess resin should be expelled from the hole evenly around the steel element showing that the hole is full. This excess resin should be removed from around the mouth of the hole before it sets.

Leave the anchor to cure.

Do not disturb the anchor until the appropriate loading/curing time has elapsed depending on the substrate conditions and ambient temperature.

ChemSet[™] Reo502[™] Plus, ChemSet[™] Epcon[™] C6 Plus, ChemSet[™] Epcon[™] G5 PRO for rebar connection

Intended use Installation instructions IV Annex B 9

Design bond strength of post-installed rebar $f_{bd,PIR}$ and $f_{bd,PIR,100y}$ under static loading for working life 50 and 100 years for hammer or dustless drilling

 $f_{bd,PIR} = k_b \cdot f_{bd}$

k_b = reduction factor

 f_{bd} = design bond strength of cast-in rebar according to EN 1992-1-1

Table C1: Values of the design bond strength of post installed rebar $f_{bd,PIR} = f_{bd,PIR,100y}$ with reduction factor $k_b = k_{b,100y}$ for hammer or dustless drilling methods for good bond conditions

	Rebar Ø 8 to Ø 28											
Concrete class	C12/15	C16/20	C20/25	C25/30	C30/37	C35/45	C40/50	C45/55	C50/60			
k _b [-]	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0			
f _{bd,PIR} [N/mm ²]	1,6	2,0	2,3	2,7	3,0	3,4	3,7	4,0	4,3			
	Rebar Ø 32											
Concrete class	Concrete class C12/15 C16/20 C20/25 C25/30 C30/37 C35/45 C40/50 C45/55 C50/60											
k _b [-]	1,0	1,0	1,0	1,0	1,0	1,0	1,0	0,92	0,86			
f _{bd,PIR} [N/mm ²]	1,6	2,0	2,3	2,7	3,0	3,4		3,7				
	Rebar Ø 40											
Concrete class	C12/15	C16/20	C20/25	C25/30	C30/37	C35/45	C40/50	C45/55	C50/60			
k _b [-]	1,0	1,0	1,0	0,86	0,76	0,69	0,63	0,58	0,54			
f _{bd,PIR} [N/mm ²]	1,5	1,8				2,1						

Tabulated values are valid for good bond conditions according to EN 1992-1-1. For all other bond conditions multiply the values by 0,7.

|--|

Rebar	Amplification		Concrete class								
	factor	C12/15	C16/20	C20/25	C25/30	C30/37	C35/45	C40/50	C45/55	C50/60	
Ø 8		1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	
Ø 10		1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	
Ø 12		1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	
Ø 14		1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	
Ø 16		1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	
Ø 18		1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	
Ø 20		1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	
Ø 22	$\alpha_{\text{lb}} = \alpha_{\text{lb},100y}$	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	
Ø 24		1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	
Ø 25		1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	
Ø 26	3	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	
Ø 28		1,0	1,0	1,0	1,0	1,0	1,0	1,1	1,2	1,3	
Ø 32		1,0	1,0	1,0	1,0	1,0	1,0	1,1	1,2	1,3	
Ø 40		1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	

ChemSet[™] Reo502[™] Plus, ChemSet[™] Epcon[™] C6 Plus, ChemSet[™] Epcon[™] G5 PRO for rebar connection

Performances

Design values of the ultimate bond resistance for hammer drilling

Annex C 1

Design bond strength of post-installed rebar $f_{bd,PIR}$ and $f_{bd,PIR,100y}$ under static loading for working life 50 and 100 years for diamond core drilling

 $f_{bd,PIR} = k_b \cdot f_{bd}$

k_b = reduction factor

 f_{bd} = design bond strength of cast-in rebar according to EN 1992-1-1

Table C3: Values of the design bond strength of post installed rebar $f_{bd,PIR} = f_{bd,PIR,100y}$ with reduction factor $k_b = k_{b,100y}$ for diamond core drilling methods for good bond conditions

	Rebar Ø 8 to Ø 26										
Concrete class	C12/15	C16/20	C20/25	C25/30	C30/37	C35/45	C40/50	C45/55	C50/60		
k _b [-]	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0		
f _{bd,PIR} [N/mm ²]	1,6	2,0	2,3	2,7	3,0	3,4	3,7	4,0	4,3		
				Rebar Ø :	28						
Concrete class	C12/15	C16/20	C20/25	C25/30	C30/37	C35/45	C40/50	C45/55	C50/60		
k _b [-]	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	0,93		
f _{bd,PIR} [N/mm ²]	1,6	2,0	2,3	2,7	3,0	3,4	3,7	4	,0		
				Rebar Ø	32						
Concrete class	C12/15	C16/20	C20/25	C25/30	C30/37	C35/45	C40/50	C45/55	C50/60		
k _b [-]	1,0	1,0	1,0	1,0	1,0	1,0	0,91	0,84	0,79		
f _{bd,PIR} [N/mm ²]	1,6	2,0	2,3	2,7	3,0		3	,4			
	Rebar Ø 40										
Concrete class	C12/15	C16/20	C20/25	C25/30	C30/37	C35/45	C40/50	C45/55	C50/60		
k _b [-]	1,0	1,0	1,0	0,86	0,76	0,69	0,63	0,58	0,54		
f _{bd,PIR} [N/mm ²]	1,5	1,8				2,1					

Tabulated values are valid for good bond conditions according to EN 1992-1-1. For all other bond conditions multiply the values by 0,7.

Table C4: Amplification factor for minimum anchorage length for diamond core drilling methods

Rebar	Amplification factor	Concrete class C12/15 to C50/60
Ø 8 to Ø 40	$\alpha_{\rm lb} = \alpha_{\rm lb,100y}$	1,5

ChemSet [™] R	Reo502 [™] Plus,	ChemSet™	Epcon [™] C6	Plus,
ChemSet [™] E	Epcon™ G5 PR	O for rebar	connection	

Performances

Design values of the ultimate bond resistance for diamond core drilling

Annex C 2

Design bond strength of post-installed rebar fbd,PIR.seis and fbd,PIR,100y,seis under seismic loading for working life 50 and 100 years for hammer or dustless drilling

 $f_{bd,PIR,seis} = k_b \cdot f_{bd}$

k_{b,seis}

= reduction factor for seismic loading

= design bond strength of cast-in rebar according to EN 1992-1-1 **f**_{bd}

Table C5: Values of the design bond strength of post installed rebar $f_{bd,PIR,seis} = f_{bd,PIR,100y,seis}$ with reduction factor $k_{b,seis} = k_{b,100y,seis}$ under seismic loading for hammer or dustless drilling methods for good bond conditions

Rebar Ø 12 to Ø 28								
Concrete class	C16/20	C20/25	C25/30	C30/37	C35/45	C40/50	C45/55	C50/60
k _{b,seis} [-]	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0
f _{bd,PIR,seis} [N/mm ²]	2,0	2,3	2,7	3,0	3,4	3,7	4,0	4,3
Rebar Ø 32								
Concrete class	C16/20	C20/25	C25/30	C30/37	C35/45	C40/50	C45/55	C50/60
k _{b,seis} [-]	1,0	1,0	1,0	1,0	1,0	1,0	0,92	0,86
f _{bd,PIR,seis} [N/mm ²]	2,0	2,3	2,7	3,0	3,4	3,7		
Rebar Ø 40								
Concrete class	C16/20	C20/25	C25/30	C30/37	C35/45	C40/50	C45/55	C50/60
k _{b,seis} [-]	1,0	1,0	0,86	0,76	0,69	0,63	0,58	0,54
f _{bd,PIR,seis} [N/mm ²]	1,8				2,1			

Tabulated values are valid for good bond conditions according to EN 1992-1-1.

If Nationally Determined Parameter for α_{ct} differs from the recommended value given in EN 1992-1-1, f_{bd} shall be multiplied with α_{ct} .

If Nationally Determined Parameter for γ_c differs from the recommended value given in EN 1992-1-1, f_{bd} shall be multiplied with 1,5/ γ_c .

For all other than good bond conditions f_{bd} shall be multiplied with n₁ according to EN 1992-1-1, section 8.4.2.

For the minimum concrete cover see Annex B 3.

Table C6: Amplification	factor for minimum	anchorage length for	hammer or dustless	drilling methods

Rebar	Amplification	Concrete class							
	factor	C16/20	C20/25	C25/30	C30/37	C35/45	C40/50	C45/55	C50/60
Ø 12		1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0
Ø 14	$\alpha_{\rm lb} = \alpha_{\rm lb,100y}$	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0
Ø 16		1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0
Ø 18		1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0
Ø 20		1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0
Ø 22		1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0
Ø 24		1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0
Ø 25		1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0
Ø 26		1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0
Ø 28		1,0	1,0	1,0	1,0	1,0	1,1	1,2	1,3
Ø 32		1,0	1,0	1,0	1,0	1,0	1,1	1,2	1,3
Ø 40		1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5

ChemSet [™] Reo502 [™] Plus, ChemSet [™] Epcon [™] C6 Plus, ChemSet [™] Epcon [™] G5 PRO for rebar connection
Performances
Design values of the ultimate bond strength under seismic loading
for hammer or dustless drilling

Annex C 3

Design values of the bond strength $f_{bd,fi}$ and $f_{bd,fi,100y}$ under fire exposure for working life 50 and 100 years for hammer or dustless drilling

The design value of the bond strength $f_{bd,fi} = f_{bd,fi,100y}$ under fire exposure has to be calculated according the following equation:

$$f_{bd,fi}(\theta) = f_{bd,fi,100y}(\theta) = k_{b,fi}(\theta) \cdot f_{bd,PIR} \cdot \frac{\gamma_c}{\gamma_{M,fi}}$$

 $k_{b,fi}(\theta) = 2150 \cdot \theta^{-1,438} / (f_{bd,PIR} \cdot 4,3) \le 1$

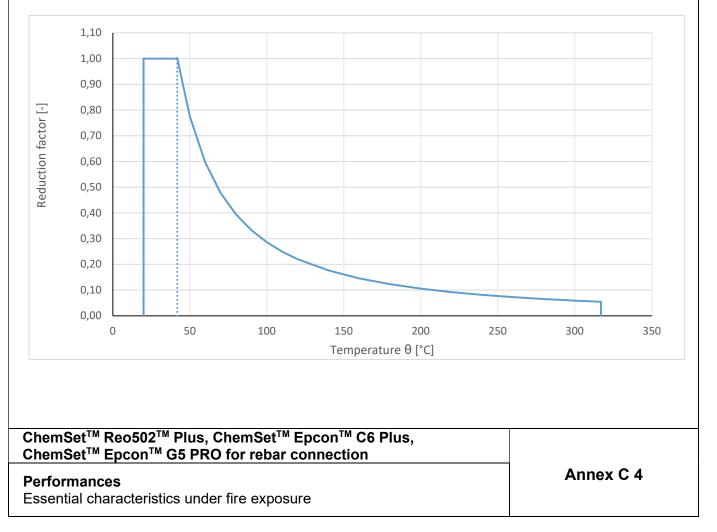
where:

 $\theta > 317^{\circ}C$ $k_{b,fi}(\theta) = 0$

with:

 $k_{b,fi}(\theta)$ reduction factor in case of fire

θ ≤ 317°C


(θ) temperature in °C in the mortar layer
 f_{bd,PIR} design value of the bond strength in N/mm² according to Table C1 considering the concrete class, the rebar diameter, the drilling method and the bond conditions according to EN 1992-1-1:2004+AC:2010

 γ_c partial safety factor according to EN 1992-1-1:2004+AC:2010

 $\gamma_{M,fi}$ partial safety factor according to EN 1992-1-2:2004+AC:2008+A1:2019

The anchorage length shall be determined in accordance with EN 1992-1-1:2004+AC:2010 equation (8.3) using the bond strength $f_{bd,fi}(\theta)$.

Figure C1: Example graph of reduction factor $k_{b,fi}(\theta)$ for concrete strength class C20/25 for good bond conditions

